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  # ares
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.
## Files in the folder
- pytorch_ares/: PyTorch implementation of ares1.0.
- easyrobust/: EasyRobust is a tool for training your robust models. Now it support adversarial / non-adversarial training of CNN / ViT models on ImageNet.



            

          

      

      

    

  

    
      
          
            
  # EasyRobust

EasyRobust is a tool for training your robust models. Now it support adversarial / non-adversarial training of CNN / ViT models on ImageNet.

## Install

`
git clone https://github.com/thu-ml/ares/tree/main/easyrobust
cd easyrobust
pip install -e .
`

## Training

`
sh train.sh train_configs/imagenet/resnet50_baseline.yaml
`

## Testing

see [test_scripts](https://github.com/alibaba/easyrobust/tree/main/test_scripts)

## Templates for Training


	train_configs/imagenet/deit_small_baseline.yaml: baseline training on deit_small


	train_configs/imagenet/resnet50_baseline.yaml: baseline training on resnet50


	train_configs/imagenet/advtrain/resnet50_advtrain.yaml: adversarial training on resnet50


	train_configs/imagenet/advtrain/deit_small_advtrain.yaml: adversarial training on deit_small




More training templates will be supported in future.

## Supported Methods

### Augmentation-Based


	All data augmentation in timm.


	StyleAugmentation [Style Augmentation: Data Augmentation via Style Randomization](https://arxiv.org/abs/1809.05375)


	CartoonAugmentation [CartoonGAN: Generative Adversarial Networks for Photo Cartoonization](https://openaccess.thecvf.com/content_cvpr_2018/papers/Chen_CartoonGAN_Generative_Adversarial_CVPR_2018_paper.pdf)




### Model-Based
- All implemented models in timm.


	WaveCNet: [WaveCNet: Wavelet Integrated CNNs to Suppress Aliasing Effect for Noise-Robust Image Classification](https://arxiv.org/abs/2107.13335)


	RVT: [Towards Robust Vision Transformer](https://arxiv.org/abs/2105.07926)


	DrViT: [Discrete Representations Strengthen Vision Transformer Robustness](https://arxiv.org/abs/2111.10493)




### Activation-Based


	kWTA: [Resisting Adversarial Attacks by k-Winners-Take-All](https://arxiv.org/abs/1905.10510)


	LP_ReLU: [Robust Image Classification Using a Low-Pass Activation Function and DCT Augmentation](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9455411&tag=1)




### Pooling-Based


	BlurPool: [Making Convolutional Networks Shift-Invariant Again](https://arxiv.org/abs/1904.11486)


	GaussianPool: [Gaussian-Based Pooling for Convolutional Neural Networks](https://staff.aist.go.jp/takumi.kobayashi/publication/2019/NeurIPS2019.pdf)




### Norm-Based


	SelfNorm: [CrossNorm and SelfNorm for Generalization under Distribution Shifts](https://arxiv.org/abs/2102.02811)


	pAdaIN: [Permuted AdaIN: Reducing the Bias Towards Global Statistics in Image Classification](https://arxiv.org/abs/2010.05785)


	CrossNorm: [CrossNorm and SelfNorm for Generalization under Distribution Shifts](https://arxiv.org/abs/2102.02811)




### Training Methods


	Adversarial Training: [Towards Deep Learning Models Resistant to Adversarial Attacks](https://arxiv.org/abs/1706.06083)


	GNT: [A simple way to make neural networks robust against diverse image corruptions](https://arxiv.org/abs/2001.06057)


	Shape-Texture Debiased: [Shape-Texture Debiased Neural Network Training](https://arxiv.org/abs/2010.05981)


	AdvProp: [Adversarial Examples Improve Image Recognition](https://arxiv.org/abs/1911.09665)




### Loss function


	ProbCompactLoss: [Improving Adversarial Robustness via Probabilistically Compact Loss with Logit Constraints](https://arxiv.org/abs/2012.07688)


	CEB: [CEB Improves Model Robustness](https://arxiv.org/abs/2002.05380)




## TODO


	More training scripts


	Validation the results


	More robust methods






            

          

      

      

    

  

    
      
          
            
  # ImageNet Robust Models

This repository contains the robust models trained on ImageNet, and the scripts for robustness evaluation.

The benchmarked results have been contained in ARES-Bench.

# Usage

First, clone the repository locally:
`
git clone https://github.com/alibaba/easyrobust.git
cd easyrobust
pip install -r requirements.txt
`
Then test runing on ImageNet Validation set:
`
python robustness_validation.py --model=resnet50 --interpolation=3 --imagenet_val_path=/path/to/ILSVRC/Data/CLS-LOC/val
`
The trained models will be downloaded automaticly. If you want to download the checkpoints manually, check the urls in [utils.py](https://github.com/alibaba/easyrobust/blob/main/utils.py).

The code supports [Stylized-ImageNet](https://github.com/rgeirhos/Stylized-ImageNet), [ImageNet-V2](https://github.com/modestyachts/ImageNetV2), [ImageNet-R](https://github.com/hendrycks/imagenet-r), [ImageNet-A](https://github.com/hendrycks/natural-adv-examples), [ImageNet-Sketch](https://github.com/HaohanWang/ImageNet-Sketch), [ObjectNet](https://objectnet.dev/), [ImageNet-C](https://github.com/hendrycks/robustness), [AutoAttack](https://github.com/fra31/auto-attack) evaluation. See [test_example.sh](https://github.com/alibaba/easyrobust/blob/main/test_example.sh) for details.

## Adversarially robust models
18 Adversarially trained models are opened in utils.py.

## Non-Adversarially robust models

We collect some non-adversarially robust models based on resnet50. To test these models, replace the [this line](https://github.com/alibaba/easyrobust/blob/db87c8f26a2b722ba5af1de4e6b9aebba76de6de/utils.py#L5) with following urls:


Method   |  Architecture  | weights |



|:-------:|:——–:|:--------:|
| SIN |  resnet50 | http://alisec-competition.oss-cn-shanghai.aliyuncs.com/xiaofeng/imagenet_pretrained_models/clean_models/SIN.pth |
| ANT |  resnet50 | http://alisec-competition.oss-cn-shanghai.aliyuncs.com/xiaofeng/imagenet_pretrained_models/clean_models/ANT3x3_Model.pth |
| Augmix |  resnet50 | http://alisec-competition.oss-cn-shanghai.aliyuncs.com/xiaofeng/imagenet_pretrained_models/clean_models/augmix.pth |
| DeepAugment |  resnet50 | http://alisec-competition.oss-cn-shanghai.aliyuncs.com/xiaofeng/imagenet_pretrained_models/clean_models/deepaugment.pth |
| DebiasedCNN |  resnet50 | http://alisec-competition.oss-cn-shanghai.aliyuncs.com/xiaofeng/imagenet_pretrained_models/clean_models/res50-debiased.pth |



            

          

      

      

    

  

    
      
          
            
  # pytorch_ares
This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety),
a Python library for adversarial machine learning research focusing on benchmarking adversarial
robustness on image classification correctly and comprehensively.
## Installation


	
	Clone this repo
	`bash
git clone https://github.com/thu-ml/ares/tree/main/pytorch_ares
`







	
	Install the experimental environment
	`bash
pip install -r requirements.txt
`









The requirements.txt includes its dependencies.
## Files in the folder
- pytorch_ares/




	data/: The code supports cifar10 and imagenet datasets.


	test/: Some toyexamples for testing adversarial attack methods and adversarial defense methods.


	pytorch_ares/
- dataset_torch/: Data processing for cifar10 and imagenet datasets.
- attack_torch/: PyTorch implementation of some adversarial attack methods.
- cifar10_model/: PyTorch implementation of some adversarial defense models on the cifar10 dataset.
- defense_torch/: PyTorch implementation of some defense methods.


	third_party/: Other open source repositories.


	attack_benchmark/: Adversarial robustness benchmarks for image classification.







## Supported Methods




### Adversarial attack


	FGSM: [Explaining and harnessing adversarial examples](https://arxiv.org/pdf/1412.6572.pdf)


	BIM: [Adversarial examples in the physical world](https://arxiv.org/pdf/1607.02533.pdf?ref=https://githubhelp.com)


	PGD: [Towards Deep Learning Models Resistant to Adversarial Attacks](https://arxiv.org/pdf/1706.06083.pdf中有体现，以后说到CW攻击再细说%E3%80%82)


	CW: [Towards Evaluating the Robustness of Neural Networks](https://arxiv.org/pdf/1608.04644.pdf?source=post_page)


	DeepFool: [DeepFool: a simple and accurate method to fool deep neural networks](https://openaccess.thecvf.com/content_cvpr_2016/papers/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR_2016_paper.pdf)


	MIM: [Boosting Adversarial Attacks with Momentum](https://openaccess.thecvf.com/content_cvpr_2018/papers/Dong_Boosting_Adversarial_Attacks_CVPR_2018_paper.pdf)


	DIM: [Improving Transferability of Adversarial Examples with Input Diversity](https://openaccess.thecvf.com/content_CVPR_2019/papers/Xie_Improving_Transferability_of_Adversarial_Examples_With_Input_Diversity_CVPR_2019_paper.pdf)


	TIM: [Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks](https://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Evading_Defenses_to_Transferable_Adversarial_Examples_by_Translation-Invariant_Attacks_CVPR_2019_paper.pdf)


	SI-NI-FGSM: [Nesterov accelerated gradient and scale invariance for adversarial attacks](https://arxiv.org/pdf/1908.06281.pdf)


	VIM: [Enhancing the Transferability of Adversarial Attacks through Variance Tuning](https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_Enhancing_the_Transferability_of_Adversarial_Attacks_Through_Variance_Tuning_CVPR_2021_paper.pdf)


	SGM: [Skip connections matter: On the transferability of adversarial examples generated with resnets](https://arxiv.org/pdf/2002.05990.pdf)


	CDA: [Cross-Domain Transferability of Adversarial Perturbations](https://proceedings.neurips.cc/paper/2019/file/99cd3843754d20ec3c5885d805db8a32-Paper.pdf)


	AutoAttack: [Reliable Evaluation of Adversarial Robustness with an Ensemble of Diverse Parameter-free Attacks](http://proceedings.mlr.press/v119/croce20b/croce20b.pdf)


	Boundary: [Decision-based adversarial attacks: Reliable attacks against black-box machine learning models](https://arxiv.org/pdf/1712.04248.pdf)


	SPSA: [Adversarial Risk and the Dangers of Evaluating Against Weak Attacks](http://proceedings.mlr.press/v80/uesato18a/uesato18a.pdf)


	Evolutionary: [Efficient Decision-based Black-box Adversarial Attacks on Face Recognition](https://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Efficient_Decision-Based_Black-Box_Adversarial_Attacks_on_Face_Recognition_CVPR_2019_paper.pdf)


	NES: [Black-box Adversarial Attacks with Limited Queries and Information](http://proceedings.mlr.press/v80/ilyas18a/ilyas18a.pdf)


	Nattack: [NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks](http://proceedings.mlr.press/v97/li19g/li19g.pdf)


	TTA: [On Success and Simplicity: A Second Look at Transferable Targeted Attacks](https://proceedings.neurips.cc/paper/2021/file/30d454f09b771b9f65e3eaf6e00fa7bd-Paper.pdf)




### Adversarial defense


	RST: [Unlabeled Data Improves Adversarial Robustness](https://arxiv.org/abs/1905.13736)


	TRADES: [Theoretically Principled Trade-off between Robustness and Accuracy](https://arxiv.org/abs/1901.08573)


	FS-AT: [Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training](https://arxiv.org/abs/1907.10764)


	Pre-Training: [Using Pre-Training Can Improve Model Robustness and Uncertainty](https://arxiv.org/abs/1907.10764)


	AT-HE: [Boosting Adversarial Training with Hypersphere Embedding](https://arxiv.org/abs/2002.08619)


	Robust Overfitting: [Overfitting in adversarially robust deep learning](https://arxiv.org/abs/2002.11569)


	FastAT: [Fast is better than free: Revisiting adversarial training](https://arxiv.org/abs/2001.03994)


	AWP: [Adversarial Weight Perturbation Helps Robust Generalization](https://arxiv.org/abs/2004.05884)


	HYDRA: [HYDRA: Pruning Adversarially Robust Neural Networks](https://arxiv.org/abs/2002.10509)


	Label Smoothing: [Bag of Tricks for Adversarial Training](https://arxiv.org/abs/2010.00467)




## Example to run the codes

ARES provides command line interface to run benchmarks. For example, you can test the attack success rate of fgsm on resnet18 on the cifar10 dataset:


cd test/
python test_fgsm.py –dataset_name cifar10




There are 4 run_***.py files in the attack_benchmark folder that evaluate the adversarial robustness benchmarks on the cifar10 and imagenet datasets. For example, if you want to evaluate the robustness of the defense model on the cifar10 dataset, you can run the following command line:


cd attack_benchmark/
python run_cifar10_defense.py






            

          

      

      

    

  

    
      
          
            
  # Boosting Adversarial Training with Hypersphere Embedding

## Environment settings and libraries we used in our experiments

This project is tested under the following environment settings:
- OS: Ubuntu 16.04.3
- GPU: Geforce 2080 Ti or Tesla P100
- Cuda: 9.0, Cudnn: v7.03
- Python: 3.5.2
- PyTorch: 1.2.0
- Torchvision: 0.4.0

## The guidelines

We provide the training and evaluations codes on CIFAR-10 / CIFAR-10-C in [here](https://github.com/ShawnXYang/Hypersphere-Embedding-Defense/tree/master/CIFAR-10), and those on ImageNet / ImageNet-C in [here](https://github.com/ShawnXYang/Hypersphere-Embedding-Defense/tree/master/ImageNet), respectively. These codes can re-implements the results in our paper.



            

          

      

      

    

  

    
      
          
            
  ## Description of codes on CIFAR-10

To ensure that our experiments perform fair comparison with previous work, we mainly adopt the public codes from [TRADES](https://github.com/yaodongyu/TRADES), and make some modifications on them to run the trials.

## Adversarial Training


	Train PGD-AT




`shell
python train_adv_cifar10.py --loss=pgd
`

### Adversarial Training with HE
Here we activate the HE operation and set the scale s and margin m.


	Train PGD-AT + HE:




`shell
python train_adv_cifar10.py --loss=pgd_he --s=10.0 --m=0.2 --wd 5e-4
`


	Train TRADES + HE:




`shell
python train_adv_cifar10.py --loss=trades_he --beta=6.0 --s=15.0 --m=0.2
`


	Train ALP + HE:




`shell
python train_adv_cifar10.py --loss=alp_he --beta=0.5 --s=20.0 --m=0.3
`

Our pre-trained models for CIFAR-10 WideResNets (in width factor 20 and 10) are available, including [PGD+HE-wide20](http://ml.cs.tsinghua.edu.cn/~xiaoyang/downloads/weights/model-wideres-pgdHE-wide20.pt) and [PGD+HE-wide10](http://ml.cs.tsinghua.edu.cn/~xiaoyang/downloads/weights/model-wideres-pgdHE-wide10.pt). We find that our HE mechanism is more suitable for the PGD-AT framework, since its principled formula is more aligned with our analysis.

## Robustness Evaluation

### Under the PGD attacks
To evaluate the performance of the trained models under the PGD attacks (default PGD-20), the running command is
```shell


$ python pgd_attack_cifar10.py




```

### Under AutoAttack
We also evaluate a reliable attack, named [AutoAttack](https://github.com/fra31/auto-attack), the running command is
```shell


$ python test_autoattack.py –model-path=$CHECKPOINT_PATH$ –use_FNandWN –widen_factor=20




```

### On the CIFAR-10-C dataset

To evaluate the performance of the general robustness, we also test on the [CIFAR-10-C](https://zenodo.org/record/2535967) datasets by [Hendrycks & Dietterich (ICLR 2019)](https://arxiv.org/abs/1903.12261).
The running command is
```shell


$ python general_attack_cifar10.py




```



            

          

      

      

    

  

    
      
          
            
  ## Description of codes on ImageNet

Our experiments on ImageNet implement the FreeAT and FreeAT frameworks, where the codes are mainly forked from the [free adversarial training repository](https://github.com/mahyarnajibi/FreeAdversarialTraining), with the corresponding modifications with HE.

## Training codes

### FreeAT

Following the [FreeAT paper](https://arxiv.org/abs/1904.12843) by Shafahi et al. (2019), the command for training models with the FreeAT is
`shell
python main_free.py /data/ImageNet
`
The default training settings are included in the configs.yml file, where the model is resnet50, initial learning rate of momentum SGD is 0.1, the maximal perturbation is 4/255 with step size of 1/255, the batch size is 256.

### FreeAT + HE

The training command for FreeAT + HE (our method) is
`shell
python main_free.py /data/ImageNet --FN True --WN True --s_HE 10.0 --angular_margin_HE 0.2
`
Here we activate the FN and WN operations, and set the scale s=10.0 and margin m=0.2. These flags can be changed to perform, e.g., ablations studies on the effect of each component in HE.

## Evaluation codes

### Under the PGD attacks
To evaluate the performance of the trained models under the PGD attacks, the running command for FreeAT is
`shell
python evaluate.py /data/ImageNet -e --resume ./resnet50_free_adv_step4_eps4_repeat4_bs256/model_best.pth.tar
`
The running command for FreeAT + HE is
`shell
python evaluate.py /data/ImageNet -e --FN True --WN True --s_HE 10.0 --angular_margin_HE 0.2 --resume ./resnet50_free_adv_step4_eps4_repeat4_bs256_FN_WN_s10.0_margin0.2/model_best.pth.tar
`

### On the ImageNet-C dataset
To evaluate the performance of the general robustness, we also test on the [ImageNet-C](https://github.com/hendrycks/robustness) datasets by [Hendrycks & Dietterich (ICLR 2019)](https://arxiv.org/abs/1903.12261).
The running command for FreeAT is
`shell
python evaluate.py /data/ImageNet-C --eva_on_imagenet_c --resume ./resnet50_free_adv_step4_eps4_repeat4_bs256/model_best.pth.tar
`
and similarly the command for FreeAT + HE is
`shell
python evaluate.py /data/ImageNet-C --eva_on_imagenet_c --FN True --WN True --s_HE 10.0 --angular_margin_HE 0.2 --resume ./resnet50_free_adv_step4_eps4_repeat4_bs256_FN_WN_s10.0_margin0.2/model_best.pth.tar
`

### Calculate gradient norm ratios
In order to investigate the gradient norm ratios as indicated in the Figure 6 of our paper, the command for FreeAT + HE is
`shell
python main_free.py /data/ImageNet --FN True --WN True --s_HE 10.0 --angular_margin_HE 0.2 --print_gradients True
`
For FreeAT, one can simply remove the related flags in the above command.



            

          

      

      

    

  

    
      
          
            
  # Adversarial Weight Perturbation Helps Robust Generalization

Code for NeurIPS 2020 “[Adversarial Weight Perturbation Helps Robust Generalization](https://arxiv.org/pdf/2004.05884.pdf)” by [Dongxian Wu](https://scholar.google.com/citations?user=ZQzqQqwAAAAJ&hl=en&oi=ao), [Shu-Tao Xia](https://scholar.google.com/citations?user=koAXTXgAAAAJ&hl=en&oi=ao), and [Yisen Wang](https://sites.google.com/site/csyisenwang/).

## News

10/13/2020 - Our code and paper are released.

## Requisite

This code is implemented in PyTorch, and we have tested the code under the following environment settings:


	python = 3.7.3


	torch = 1.2.0


	torchvision = 0.4.0




## What is in this repository

Codes for our AWP-based adversarial training (AT-AWP) are in at-awp, and those for AWP-based TRADES (TRADES-AWP) are in ./trades-awp:
- In ./at-awp, the codes for CIFAR-10, CIFAR-100, and SVHN are in train_cifar10.py, train_cifar100.py, train_svhn.py respectively.
- In ./trades-awp, the codes for CIFAR-10 and CIFAR-100 are in train_trades_cifar.py.

The checkpoints can be found in [Google Drive](https://drive.google.com/drive/folders/1K1hvOZ4qTWYil3hv32IDoyr_xGjf4ZN-?usp=sharing) or [Baidu Drive](https://pan.baidu.com/s/1ZtY3RweP10m_ev0XF5zB6A)(pw: 8tsv).

## How to use it

For AT-AWP with a PreAct ResNet-18 on CIFAR-10 under L_inf threat model (8/255), run codes as follows,
`
python train_cifar10.py --data-dir DATASET_DIR
`
where $DATASET_DIR is the path to the dataset.

For TRADES-AWP with a WRN-34-10 on CIFAR10 under L_inf threat model (8/255), run codes as follows,
`
python train_trades_cifar.py --data CIFAR10 --data-path DATASET_DIR
`
## The Leaderboard Under Auto Attack

To verify the effectiveness of AWP further, we evaluate the robustness under a stronger attack, auto-attack [3]. Here we only list Top 10 results on the leadboard (up to 10/13/2020) and our results. Compared with the leadboard results, AWP can boost the robustness of the AT and its variants (TRADES[2], MART[4], Pre-training[5], RST[6], etc.), ranking 1st on both with and without data. Even some AWP-based methods without additional data can surpass the results under additional data.

More results can be found in [./auto-attacks](https://github.com/csdongxian/AWP/tree/main/auto_attacks)

|#    |method / paper           |model     |architecture |clean         |report. |AA  |
|:---:|—|:---:|:—:|---:|—:|---:|
|**-**| RST-AWP (ours)‡| [downloads](https://drive.google.com/file/d/1sSjh4i2imdoprw_JcPj2cZzrJm0RIRI6/view?usp=sharing)| WRN-28-10**| **88.25**| - | **60.04**|
|**1**| [(Wu et al., 2020)](https://arxiv.org/abs/2010.01279)‡| *available*| WRN-34-15| 85.60| 59.78| 59.78|
|**2**| [(Carmon et al., 2019)](https://arxiv.org/abs/1905.13736) **RST‡| available*| WRN-28-10| 89.69| 62.5| 59.53|
|*-| **Pre-training-AWP (ours)‡| [downloads](https://drive.google.com/file/d/1xwisiNlxqoODnkJ2pP4g8wHD3tBgk7AM/view?usp=sharing)| WRN-28-10**| **88.33**| - | **57.39**|
|**3**| [(Sehwag et al., 2020)](https://github.com/fra31/auto-attack/issues/7)‡| *available*| WRN-28-10| 88.98| -| 57.14|
|**4**| [(Wang et al., 2020)](https://openreview.net/forum?id=rklOg6EFwS)‡| *available*| WRN-28-10| 87.50| 65.04| 56.29|
|-| **TRADES-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1hlVTLZkveYGWpE9-46Wp5NVZt1slz-1T/view?usp=sharing)| **WRN-34-10**| **85.36**| - | **56.17**|
|**5**| [(Alayrac et al., 2019)](https://arxiv.org/abs/1905.13725)‡| *available*| WRN-106-8| 86.46| 56.30| 56.03|
|**6**| [(Hendrycks et al., 2019)](https://arxiv.org/abs/1901.09960) **Pre-training‡| available*| WRN-28-10| 87.11| 57.4| 54.92|
|*-| **MART-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1RwHjupK2dshNHm_4fK3h1-Ys0RckhXvH/view?usp=sharing)| **WRN-34-10**| **84.43**| - | **54.23**|
|-**| **AT-AWP (ours)**| [downloads](https://drive.google.com/file/d/1iNfy-yTUEPuSK2uHO5tiFdEBehmQWbbN/view?usp=sharing)| **WRN-34-10**| **85.36**| - | **53.97**|
|**7**| [(Pang et al., 2020b)](https://arxiv.org/abs/2002.08619)| *available*| WRN-34-20| 85.14| -| 53.74|
|**8**| [(Zhang et al., 2020b)](https://arxiv.org/abs/2002.11242)| *available*| WRN-34-10| 84.52| 54.36| 53.51|
|**9**| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569) **AT**| *available*| WRN-34-20| 85.34| 58| 53.42|
|**10**| [(Huang et al., 2020)](https://arxiv.org/abs/2002.10319)*| *available*| WRN-34-10| 83.48| 58.03| 53.34|

## Citing this work
```
@inproceedings{wu2020adversarial,


title={Adversarial Weight Perturbation Helps Robust Generalization},
author={Dongxian Wu and Shu-Tao Xia and Yisen Wang},
booktitle={NeurIPS},
year={2020}





}

## Reference Code
[1] AT: https://github.com/locuslab/robust_overfitting

[2] TRADES: https://github.com/yaodongyu/TRADES/

[3] AutoAttack: https://github.com/fra31/auto-attack

[4] MART: https://github.com/YisenWang/MART

[5] Pre-training: https://github.com/hendrycks/pre-training

[6] RST: https://github.com/yaircarmon/semisup-adv




            

          

      

      

    

  

    
      
          
            
  # Evaluation under AutoAttack

To verify the effectiveness of AWP further, we evaluate the robustness under a stronger attack, [auto-attack](https://github.com/fra31/auto-attack).
The results up to 2020/10/13 can be seen below.

## CIFAR-10 - Linf
The robust accuracy is evaluated at eps = 8/255.Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

|#    |method / paper           |model     |architecture |clean         |report. |AA  |
|:---:|—|:---:|:—:|---:|—:|---:|
|**-**| RST-AWP (ours)‡| [downloads](https://drive.google.com/file/d/1sSjh4i2imdoprw_JcPj2cZzrJm0RIRI6/view?usp=sharing)| WRN-28-10**| **88.25**| - | **60.04**|
|**1**| [(Wu et al., 2020)](https://arxiv.org/abs/2010.01279)‡| *available*| WRN-34-15| 85.60| 59.78| 59.78|
|**2**| [(Carmon et al., 2019)](https://arxiv.org/abs/1905.13736) **RST‡| available*| WRN-28-10| 89.69| 62.5| 59.53|
|*-| **Pre-training-AWP (ours)‡| [downloads](https://drive.google.com/file/d/1xwisiNlxqoODnkJ2pP4g8wHD3tBgk7AM/view?usp=sharing)| WRN-28-10**| **88.33**| - | **57.39**|
|**3**| [(Sehwag et al., 2020)](https://github.com/fra31/auto-attack/issues/7)‡| *available*| WRN-28-10| 88.98| -| 57.14|
|**4**| [(Wang et al., 2020)](https://openreview.net/forum?id=rklOg6EFwS)‡| *available*| WRN-28-10| 87.50| 65.04| 56.29|
|-| **TRADES-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1hlVTLZkveYGWpE9-46Wp5NVZt1slz-1T/view?usp=sharing)| **WRN-34-10**| **85.36**| - | **56.17**|
|**5**| [(Alayrac et al., 2019)](https://arxiv.org/abs/1905.13725)‡| *available*| WRN-106-8| 86.46| 56.30| 56.03|
|**6**| [(Hendrycks et al., 2019)](https://arxiv.org/abs/1901.09960) **Pre-training‡| available*| WRN-28-10| 87.11| 57.4| 54.92|
|*-| **MART-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1RwHjupK2dshNHm_4fK3h1-Ys0RckhXvH/view?usp=sharing)| **WRN-34-10**| **84.43**| - | **54.23**|
|-| **AT-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1iNfy-yTUEPuSK2uHO5tiFdEBehmQWbbN/view?usp=sharing)| **WRN-34-10**| **85.36**| - | **53.97**|
|**7**| [(Pang et al., 2020b)](https://arxiv.org/abs/2002.08619)| *available*| WRN-34-20| 85.14| -| 53.74|
|**8**| [(Zhang et al., 2020b)](https://arxiv.org/abs/2002.11242)| *available*| WRN-34-10| 84.52| 54.36| 53.51|
|**9**| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569) **AT**| *available*| WRN-34-20| 85.34| 58| 53.42|
|**10**| [(Huang et al., 2020)](https://arxiv.org/abs/2002.10319)*| *available*| WRN-34-10| 83.48| 58.03| 53.34|
|**11**| [(Zhang et al., 2019b)](https://arxiv.org/abs/1901.08573) **TRADES*| *available*| WRN-34-10| 84.92| 56.43| 53.08|
|**12**| [(Qin et al., 2019)](https://arxiv.org/abs/1907.02610v2)| *available*| WRN-40-8| 86.28| 52.81| 52.84|
|**13**| [(Chen et al., 2020a)](https://arxiv.org/abs/2003.12862)| *available*| RN-50 (x3)| 86.04| 54.64| 51.56|
|**14**| [(Chen et al., 2020b)](https://github.com/fra31/auto-attack/issues/26)| *available*| WRN-34-10| 85.32| 51.13| 51.12|
|**15**| [(Sitawarin et al., 2020)](https://github.com/fra31/auto-attack/issues/23)| *available*| WRN-34-10| 86.84| 50.72| 50.72|

## CIFAR-100 - Linf
The robust accuracy is computed at eps = 8/255 in the Linf-norm.Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

|#    |method / paper  |model     |architecture |clean         |report. |AA  |
|:---:|—|:---:|:—:|---:|—:|---:|
|**-**| AT-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1aUQ3Udbn-zfQENwHRe8JsmkxjIcq0zVU/view?usp=sharing)| **WRN-34-10**| **60.38**| - | **28.86**|
|-| **TRADES-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1D-QCH-0ShtFo0s6gke5y6Ix7_x6k4Bys/view?usp=sharing)| **WRN-34-10**| **60.17**| - | **28.80**|
|**1**| [(Hendrycks et al., 2019)](https://arxiv.org/abs/1901.09960)‡| *available*| WRN-28-10| 59.23| 33.5| 28.42|
|**2**| [(Chen et al., 2020b)](https://github.com/fra31/auto-attack/issues/26)| *available*| WRN-34-10| 62.15| -| 26.94|
|-**| **AT-AWP (ours)**| [downloads](https://drive.google.com/file/d/1IlrhlQyvNmlgnkGILTqt1yo8kHuooI8B/view?usp=sharing)| **RN-18**| **53.81**| **30.71**| **25.34**|
|**3**| [(Sitawarin et al., 2020)](https://github.com/fra31/auto-attack/issues/22)| *available*| WRN-34-10| 62.82| 24.57| 24.57|
|**4**| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569) **AT**| *available*| RN-18| 53.83| 28.1| 18.95|

## CIFAR-10 - L2
The robust accuracy is computed at eps = 0.5 in the L2-norm.Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

|#    |method / paper  |model     |architecture |clean         |report. |AA  |
|:---:|—|:---:|:—:|---:|—:|---:|
|**-**| TRADES-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1D-QCH-0ShtFo0s6gke5y6Ix7_x6k4Bys/view?usp=sharing) | **WRN-34-10**| **88.51**| - | **73.66**|
|**1**| [(Augustin et al., 2020)](https://arxiv.org/abs/2003.09461)‡| *authors*| RN-50| 91.08| 73.27| 72.91|
|-| **AT-AWP (ours)**| [*downloads*](https://drive.google.com/file/d/1aUQ3Udbn-zfQENwHRe8JsmkxjIcq0zVU/view?usp=sharing) | **WRN-34-10**| **92.58**| - | **72.87**|
|-**| **AT-AWP (ours)**| [downloads](https://drive.google.com/file/d/1iNfy-yTUEPuSK2uHO5tiFdEBehmQWbbN/view?usp=sharing) | **RN-18**| **90.11**| - | **70.31**|
|**2**| [(Engstrom et al., 2019)](https://github.com/MadryLab/robustness)| *available*| RN-50| 90.83| 70.11| 69.24|
|**3**| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569) **AT**| *available*| RN-18| 88.67| 71.6| 67.68|
|**4**| [(Rony et al., 2019)](https://arxiv.org/abs/1811.09600)| *available*| WRN-28-10| 89.05| 67.6| 66.44|
|**5**| [(Ding et al., 2020)](https://openreview.net/forum?id=HkeryxBtPB)| *available*| WRN-28-4| 88.02| 66.18| 66.09|

# How to evaluate under auto-attacks

### Installation

`
pip install git+https://github.com/fra31/auto-attack
`

### Run the evaluation
Since the source codes of AT and TRADES apply different preprocessing method, we should select one in evaluation, i.e., –preprocess ‘meanstd’ for AT, –preprocess ‘01’ for TRADES. $CKPT_DIR is the path to the checkpoint.
Thus, evaluate the robustness of models trained using AT-AWP as follows,
- For the SOTA result ([checkpoint](https://drive.google.com/file/d/1sSjh4i2imdoprw_JcPj2cZzrJm0RIRI6/view?usp=sharing)) with additional data on CIFAR10 under L_inf (8/255), run
`
python eval.py --arch WideResNet28 --checkpoint CKPT_DIR --data CIFAR10 --preprocess '01'
`
- For the SOTA result ([checkpoint](https://drive.google.com/file/d/1hlVTLZkveYGWpE9-46Wp5NVZt1slz-1T/view?usp=sharing)) without additional data on CIFAR10 under L_inf (8/255), run
`
python eval.py --arch WideResNet34 --checkpoint CKPT_DIR --data CIFAR10 --preprocess '01'
`
- For the SOTA result ([checkpoint](https://drive.google.com/file/d/1o8qQrYKQuHNKSH0kUBfFKruE1neN0h6W/view?usp=sharing)) without additional data on CIFAR100 under L_inf (8/255), run
`
python eval.py --arch WideResNet34 --checkpoint CKPT_DIR --data CIFAR100 --preprocess 'meanstd'
`
- For the SOTA result ([checkpoint](https://drive.google.com/file/d/1D-QCH-0ShtFo0s6gke5y6Ix7_x6k4Bys/view?usp=sharing)) without additional data on CIFAR10 under L_2 (0.5), run
`
python eval.py --arch WideResNet34 --checkpoint CKPT_DIR --data CIFAR10 --preprocess '01' --norm L2 --epsilon 0.5
`



            

          

      

      

    

  

    
      
          
            
  # Bag of Tricks for Adversarial Training
Empirical tricks for training state-of-the-art robust models on CIFAR-10. A playground for fine-tuning the basic adversarial training settings.

[Bag of Tricks for Adversarial Training](https://openreview.net/forum?id=Xb8xvrtB8Ce) (ICLR 2021)

[Tianyu Pang](http://ml.cs.tsinghua.edu.cn/~tianyu/), [Xiao Yang](https://github.com/ShawnXYang), [Yinpeng Dong](http://ml.cs.tsinghua.edu.cn/~yinpeng/), [Hang Su](http://www.suhangss.me/), and [Jun Zhu](http://ml.cs.tsinghua.edu.cn/~jun/index.shtml).

## Environment settings and libraries we used in our experiments

This project is tested under the following environment settings:
- OS: Ubuntu 18.04.4
- GPU: Geforce 2080 Ti or Tesla P100
- Cuda: 10.1, Cudnn: v7.6
- Python: 3.6
- PyTorch: >= 1.4.0
- Torchvision: >= 0.4.0

## Acknowledgement
The codes are modifed based on [Rice et al. 2020](https://github.com/locuslab/robust_overfitting), and the model architectures are implemented by [pytorch-cifar](https://github.com/kuangliu/pytorch-cifar).

## Threat Model
We consider the most widely studied setting:
- L-inf norm constraint with the maximal epsilon be 8/255 on CIFAR-10.
- No accessibility to additional data, neither labeled nor unlabeled.
- Utilize the PGD-AT framework in [Madry et al. 2018](https://arxiv.org/abs/1706.06083).

(Implementations on the TRADES framework can be found [here](https://github.com/ShawnXYang/AT_HE))

## Trick Candidates
Importance rate: ![#f03c15](https://via.placeholder.com/15/f03c15/000000?text=+) Critical  ![#1589F0](https://via.placeholder.com/15/1589F0/000000?text=+) Useful  ![#c5f015](https://via.placeholder.com/15/c5f015/000000?text=+) Insignificance


	Early stopping w.r.t. training epochs (![#f03c15](https://via.placeholder.com/15/f03c15/000000?text=+) Critical).




Early stopping w.r.t. training epochs was first introduced in the [code of TRADES](https://github.com/yaodongyu/TRADES), and was later thoroughly studied by [Rice et al., 2020](https://arxiv.org/abs/2002.11569). Due to its effectiveness, we regard this trick as a default choice.


	Early stopping w.r.t. attack intensity (![#1589F0](https://via.placeholder.com/15/1589F0/000000?text=+) Useful). Early stopping w.r.t. attack iterations was studied by [Wang et al. 2019](proceedings.mlr.press/v97/wang19i/wang19i.pdf) and [Zhang et al. 2020](https://arxiv.org/abs/2002.11242). Here we exploit the strategy of the later one, where the authors show that this trick can promote clean accuracy. The relevant flags include –earlystopPGD indicates whether apply this trick, while ‘–earlystopPGDepoch1’ and ‘–earlystopPGDepoch2’ separately indicate the epoch to increase the tolerence t by one, as detailed in [Zhang et al. 2020](https://arxiv.org/abs/2002.11242). (Note that early stopping attack intensity may degrade worst-case robustness under strong attacks)


	Warmup w.r.t. learning rate (![#c5f015](https://via.placeholder.com/15/c5f015/000000?text=+) Insignificance). Warmup w.r.t. learning rate was found useful for [FastAT](https://arxiv.org/abs/2001.03994), while [Rice et al., 2020](https://arxiv.org/abs/2002.11569) found that piecewise decay schedule is more compatible with early stop w.r.t. training epochs. The relevant flags include –warmup_lr indicates whether apply this trick, while –warmup_lr_epoch indicates the end epoch of the gradually increase of learning rate.


	Warmup w.r.t. epsilon (![#c5f015](https://via.placeholder.com/15/c5f015/000000?text=+) Insignificance). [Qin et al. 2019](https://arxiv.org/abs/1907.02610) use warmup w.r.t. epsilon in their implementation, where the epsilon gradually increase from 0 to 8/255 in the first 15 epochs. Similarly, the relevant flags include –warmup_eps indicates whether apply this trick, while –warmup_eps_epoch indicates the end epoch of the gradually increase of epsilon.


	Batch size (![#c5f015](https://via.placeholder.com/15/c5f015/000000?text=+) Insignificance). The typical batch size used for CIFAR-10 is 128 in the adversarial setting. In the meanwhile, [Xie et al. 2019](https://arxiv.org/pdf/1812.03411.pdf) apply a large batch size of 4096 to perform adversarial training on ImageNet, where the model is distributed on 128 GPUs and has quite robust performance. The relevant flag is –batch-size. According to [Goyal et al. 2017](https://arxiv.org/abs/1706.02677), we take bs=128 and lr=0.1 as a basis, and scale the lr when we use larger batch size, e.g., bs=256 and lr=0.2.


	Label smoothing (![#1589F0](https://via.placeholder.com/15/1589F0/000000?text=+) Useful). Label smoothing is advocated by [Shafahi et al. 2019](https://arxiv.org/abs/1910.11585) to mimic the adversarial training procedure. The relevant flags include –labelsmooth indicates whether apply this trick, while –labelsmoothvalue indicates the degree of smoothing applied on the label vectors. When –labelsmoothvalue=0, there is no label smoothing applied. (Note that only moderate label smoothing (~0.2) is helpful, while exccessive label smoothing (>0.3) could be harmful, as observed in [Jiang et al. 2020](https://arxiv.org/abs/2006.13726))


	Optimizer (![#c5f015](https://via.placeholder.com/15/c5f015/000000?text=+) Insignificance). Most of the AT methods apply SGD with momentum as the optimizer. In other cases, [Carmon et al. 2019](https://arxiv.org/abs/1905.13736) apply SGD with Nesterov, and [Rice et al., 2020](https://arxiv.org/abs/2002.11569) apply Adam for cyclic learning rate schedule. The relevant flag is –optimizer, which include common optimizers implemented by official Pytorch API and recently proposed gradient centralization trick by [Yong et al. 2020](https://arxiv.org/abs/2004.01461).


	Weight decay (![#f03c15](https://via.placeholder.com/15/f03c15/000000?text=+) Critical). The values of weight decay used in previous AT methods mainly fall into 1e-4 (e.g., [Wang et al. 2019](proceedings.mlr.press/v97/wang19i/wang19i.pdf)), 2e-4 (e.g., [Madry et al. 2018](https://arxiv.org/abs/1706.06083)), and 5e-4 (e.g., [Rice et al., 2020](https://arxiv.org/abs/2002.11569)). We find that slightly different values of weight decay could largely affect the robustness of the adversarially trained models.


	Activation function (![#1589F0](https://via.placeholder.com/15/1589F0/000000?text=+) Useful). As shown in [Xie et al., 2020a](https://arxiv.org/pdf/2006.14536.pdf), the smooth alternatives of ReLU, including Softplus and GELU can promote the performance of adversarial training. The relevant flags are –activation to choose the activation, and –softplus_beta to set the beta for Softplus. Other hyperparameters are used by default in the code.


	BN mode (![#1589F0](https://via.placeholder.com/15/1589F0/000000?text=+) Useful). TRADES applies eval mode of BN when crafting adversarial examples during training, while PGD-AT methods implemented by [Madry et al. 2018](https://arxiv.org/abs/1706.06083) or [Rice et al., 2020](https://arxiv.org/abs/2002.11569) use train mode of BN to craft training adversarial examples. As indicated by [Xie et al., 2020b](https://arxiv.org/pdf/1906.03787.pdf), properly dealing with BN layers is critical to obtain a well-performed adversarially trained model, while train mode of BN during multi-step PGD process may blur the distribution.




## Baseline setting (on CIFAR-10)
- Architecture: WideResNet-34-10
- Optimizer: Momentum SGD with default hyperparameters
- Total epoch: 110
- Batch size: 128
- Weight decay: 5e-4
- Learning rate: lr=0.1; decay to lr=0.01 at 100 epoch; decay to 0.001 at 105 epoch
- BN mode: eval

running command for training:
```python
python train_cifar.py –model WideResNet –attack pgd 


–lr-schedule piecewise –norm l_inf –epsilon 8 –epochs 110 –attack-iters 10 –pgd-alpha 2 –fname auto –optimizer ‘momentum’ –weight_decay 5e-4
–batch-size 128 –BNeval 




```

## Empirical Evaluations
The evaluation results on the baselines are quoted from  [AutoAttack](https://arxiv.org/abs/2003.01690) ([evaluation code](https://github.com/P2333/Bag-of-Tricks-for-AT/blob/master/eval_cifar.py)).

Note that OURS (TRADES) below only change the weight decay value from 2e-4 (used in original TRADES) to 5e-4, and train for 110 epochs (lr decays at 100 and 105 epochs). To run the evaluation script eval_cifar.py, the command should be
`python
python eval_cifar.py --out-dir 'path_to_the_model' --ATmethods 'TRADES'
`
Here ATmethods refer to the AT framework (e.g., PGDAT or TRADES).

### CIFAR-10 (eps = 8/255)
|paper           | Architecture | clean         | AA |
|---|:—:|:---:|:—:|
| **OURS (TRADES)**[[Checkpoint](http://ml.cs.tsinghua.edu.cn/~xiaoyang/downloads/bag_of_tricks/wide20_trades_eps8_tricks.pt)] | WRN-34-20| 86.43 | 54.39 |
| **OURS (TRADES)**[[Checkpoint](http://ml.cs.tsinghua.edu.cn/~xiaoyang/downloads/bag_of_tricks/wide10_trades_eps8_tricks.pt)] | WRN-34-10| 85.48 | 53.80 |
| [(Pang et al., 2020)](https://arxiv.org/abs/2002.08619) | WRN-34-20| 85.14 | 53.74 |
| [(Zhang et al., 2020)](https://arxiv.org/abs/2002.11242)| WRN-34-10| 84.52 | 53.51 |
| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569) | WRN-34-20| 85.34 | 53.35 |

### CIFAR-10 (eps = 0.031)
|paper           | Architecture | clean         | AA |
|---|:—:|:---:|:—:|
| **OURS (TRADES)**[[Checkpoint](http://ml.cs.tsinghua.edu.cn/~xiaoyang/downloads/bag_of_tricks/wide10_trades_tricks.pt)] | WRN-34-10| 85.34 | 54.64 |
| [(Huang et al., 2020)](https://arxiv.org/abs/2002.10319) | WRN-34-10| 83.48 | 53.34 |
| [(Zhang et al., 2019)](https://arxiv.org/abs/1901.08573) | WRN-34-10| 84.92 | 53.04 |



            

          

      

      

    

  

    
      
          
            
  # Feature Scattering Adversarial Training (NeurIPS 2019)

## Introduction
This is the implementation of the
[“Feature-Scattering Adversarial Training”](https://papers.nips.cc/paper/8459-defense-against-adversarial-attacks-using-feature-scattering-based-adversarial-training.pdf), which is a training method for improving model robustness against adversarial attacks. It advocates the usage of an unsupervised feature-scattering procedure for adversarial perturbation generation, which is effective for overcoming label leaking and improving model robustness.
More information can be found on the project page: https://sites.google.com/site/hczhang1/projects/feature_scattering

## Usage
### Installation
The training environment (PyTorch and dependencies) can be installed as follows:
```
git clone https://github.com/Haichao-Zhang/FeatureScatter.git
cd FeatureScatter

python3 -m venv .venv
source .venv/bin/activate

python3 setup.py install

(or pip install -e .)
```
Tested under Python 3.5.2 and PyTorch 1.2.0.

### Train
Specify the path for saving the trained models in `fs_train.sh`, and then run
`
sh ./fs_train.sh
`

### Evaluate
Specify the path to the trained models to be evaluated in `fs_eval.sh` and then run
`
sh ./fs_eval.sh
`

### Reference Model
A reference model trained on CIFAR10 is [here](https://drive.google.com/open?id=1FXgE7llvQoypf7iCGR680EKQf9cARTSg).

## Cite

If you find this work is useful, please cite the following:

```
@inproceedings{feature_scatter,


author = {Haichao Zhang and Jianyu Wang},
title  = {Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training},
booktitle = {Advances in Neural Information Processing Systems},
year = {2019}





}

## Contact

For questions related to feature-scattering, please send me an email: `hczhang1@gmail.com`




            

          

      

      

    

  

    
      
          
            
  # Max-Mahalanobis Training
Max-Mahalanobis Training (MMT) is a novel training method, which can learn more robust models without hurting clean accuracy and with little extra computational cost.
Technical details are specified in:

[Max-Mahalanobis Linear Discriminant Analysis Networks](http://proceedings.mlr.press/v80/pang18a/pang18a.pdf) (ICML 2018)

Tianyu Pang, Chao Du and Jun Zhu

[Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness](https://arxiv.org/pdf/1905.10626.pdf) (ICLR 2020)

Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen and Jun Zhu

## Environment settings and libraries we used in our experiments

This project is tested under the following environment settings:
- OS: Ubuntu 16.04.3
- GPU: Geforce 1080 Ti or Tesla P100
- Cuda: 9.0, Cudnn: v7.03
- Python: 2.7.12
- cleverhans: 2.1.0
- Keras: 2.2.4
- tensorflow-gpu: 1.9.0

We also thank the authors of [keras-resnet](https://github.com/raghakot/keras-resnet) for providing their code. Our codes are widely adapted from their repositories. For convenience, we provide the requirement.txt file to install the virtualenv that is sufficient run the codes.

In the following, we first provide the codes for training. After that, the evaluation codes, such as attacking, are provided.

## Demo of MM centers (mean_logits in the code)
<img src=”MMcenters.png” width=”70%”>

This plot shows the MM centers under different number of classes L.

## Training codes

### Standard training with the SCE loss

Let dataset be mnist, cifar10 or cifar100, the command for training models with the SCE loss is
`shell
python train.py --batch_size=50 --dataset=[dataset] --optimizer='mom' --lr=0.01 --version=2 --use_MMLDA=False --use_BN=True --use_dense=True --use_leaky=False
`
Here the initial learning rate is 0.01, the optimizer is mom and we use the Resnet-v2 architecture proposed by [He et al. (2016)](https://arxiv.org/abs/1603.05027). The training epoch on MNIST is set as 40, on CIFAR-10 and CIFAR-100 is set as 200.

### Standard training with the MMC loss
Similarly, let dataset be mnist, cifar10 or cifar100, the command for training models with the MMC loss is
`shell
python train.py --batch_size=50 --mean_var=10 --dataset=[dataset] -optimizer='mom' --lr=0.01 --version=2 --use_MMLDA=True --use_ball=True --use_BN=True --use_random=False --use_dense=True --use_leaky=False
`
Here the basic training setting, e.g., learning rate and optimizer are the same as them for the SCE loss. The meanvar parameter is the $C_{MM}$ of the MMC loss in the paper. When the bool flag use_ball is False, the command run the training with the MMLDA loss.

### Adversarial training with the SCE loss
For the adversarial training, we apply the most widely studied PGD-based method proposed by [Madry et al. (2017)](https://arxiv.org/abs/1706.06083).
`shell
python advtrain.py --batch_size=50 --dataset=[dataset] --optimizer='mom' --lr=0.01 --version=2 --adv_ratio=1.0 --use_MMLDA=False --use_ball=False --use_target=False --attack_method='MadryEtAl' --use_BN=True --use_random=False
`
Here the adv_ratio is set as 1, which means we only use adversarial examples in the training phase as suggested in previous work. The bool flag use_target indicates whether uses targeted attack or untargeted attack when crafting adversarial examples for training.

### Adversarial training with the MMC loss
The adversarial training command is similar for the MMC loss
`shell
python advtrain.py --batch_size=50 --mean_var=10 --dataset=[dataset] --optimizer='mom' --lr=0.01 --version=2 --adv_ratio=1.0 --use_MMLDA=True --use_ball=True --use_target=True --attack_method='MadryEtAl' --use_BN=True --use_random=False
`

## Evaluation codes

The pretrained models are provided below for Resnet110 (n=18):

[MMC (CIFAR-10)](http://ml.cs.tsinghua.edu.cn/~tianyu/MMC/pretrained_models/MMC_mom_cifar10/model.200.h5)

[MMC (CIFAR-100)](http://ml.cs.tsinghua.edu.cn/~tianyu/MMC/pretrained_models/MMC_mom_cifar100/model.200.h5)

[MMC + adv-training (CIFAR-10)](http://ml.cs.tsinghua.edu.cn/~tianyu/MMC/pretrained_models/MMC_mom_advtrain_cifar10/model.180.h5)

[MMC + adv-training (CIFAR-100)](http://ml.cs.tsinghua.edu.cn/~tianyu/MMC/pretrained_models/MMC_mom_advtrain_cifar100/model.180.h5).

### White-box L-infinity attack (PGD)
In this setting, the attacking methods are usually iterative-based. For examples, the command of applying targeted PGD-10 to evade the models trained by the MMC loss is
`shell
python advtest_iterative.py --batch_size=50 --attack_method='MadryEtAl' --attack_method_for_advtrain=None --dataset=[dataset] --target=True --num_iter=10 --use_ball=True --use_MMLDA=True --use_advtrain=False --epoch=[epoch] --use_BN=True --normalize_output_for_ball=False --use_random=False --use_target=False
`
Here attack_method could be ‘MadryEtAl’ (PGD), ‘FastGradientMethod’ (FGSM), ‘MomentumIterativeMethod’ (MIM) and ‘BasicIterativeMethod’ (BIM). The target indicates whether use targeted or untargeted attack; num_iter is the iteration steps of the performed attacks; epoch is the epoch of the checkpoint to load; normalize_output_for_ball is a bool flag to decide whether apply a softmax function to return predictions in the inference phase.

Note that our evaluation is based on cleverhans: 2.1.0. To perform adaptive attack, please manually modify the function `model_loss` of the file `utils_tf.py```**by substituting the softmax cross-entropy loss with other adaptive objectives, e.g.,** ```out=-tf.reduce_sum(logits * y, axis=-1)`.

When attacking the adversarially trained models, we should set the use_advtrain as True, and the attack_method_for_advtrain to be ‘MadryEtAl’ since we use the PGD-based adversarial training methods. The use_target is set the same as in the training codes. For examples, the command of applying untargeted PGD to evade the models adversarially trained by the MMC loss is
`shell
python advtest_iterative.py --mean_var=10 --batch_size=50 --attack_method='MadryEtAl' --attack_method_for_advtrain='MadryEtAl' --dataset=[dataset] --target=False --num_iter=10 --use_ball=True --use_MMLDA=True --use_advtrain=True --epoch=[epoch] --use_BN=True --normalize_output_for_ball=False --use_random=False --adv_ratio=1.0 --use_target=False
`
Note that here we set normalize_output_for_ball be False to perform an adaptive attacks.

### White-box L-2 attack (C&W)
In this setting, the attacking methods are usually optimization-based. In the C&W method, there is a binary search mechanism for the constant parameter to find sucessful adversarial examples with minimal distortion. The command below gives an example of applying targeted C&W attack on the models trained by the MMC loss.
`shell
python advtest_others.py --mean_var=10 --batch_size=50 --attack_method='CarliniWagnerL2' --attack_method_for_advtrain=None --dataset=[dataset] --target=True --use_ball=True --use_MMLDA=True --use_advtrain=False --adv_ratio=1.0 --use_target=False --epoch=[epoch] --use_BN=True --normalize_output_for_ball=False --use_random=False --use_dense=True --use_leaky=False --CW_confidence=0.
`
The specific parameter settings of the C&W attack can be found in the code. The attack_method could also be ‘ElasticNetMethod’ to perform EAD attack.

### Black-box transfer-based attack (MIM & PGD)
For the black-box transfer-based setting, we apply the MIM and PGD attacks. An example command using the untargeted PGD-10 attack is shown below
`shell
python advtest_iterative_blackbox.py --batch_size=50 --optimizer='Adam' --attack_method='MadryEtAl' --dataset=[dataset] --target=False --num_iter=10 --use_random=False --use_dense=True --use_leaky=False --epoch=[epoch] --use_BN=True --model_1='AT-MMC-100' --model_2='SCE'
`
Here model_1 is the substitute model used to craft adversarial examples, model_2 is the original model used to classify these adversarial examples. These two parameters could be SCE, MMC-10, MMC-100, AT-SCE, AT-MMC-10, AT-MMC-100. The epoch here is the training epoch of checkpoint for both the model_1 and model_2.

### Black-box gradient-free attack (SPSA)
For the black-box gradient-free setting, we apply the SPSA attack. This attacks is based on numerical approximations of the model gradients, and can evade the defenses that based on gradient masking. An example command is given below for untargeted SPSA-10 attack on the models trained by the MMC loss.
`shell
python advtest_others.py --mean_var=10 --batch_size=50 --attack_method='SPSA' --attack_method_for_advtrain=None --dataset=[dataset] --target=False --use_ball=True --use_MMLDA=True --use_advtrain=False --adv_ratio=1.0 --use_target=False --epoch=[epoch] --use_BN=True -normalize_output_for_ball=False --use_random=False --use_dense=True --use_leaky=False --SPSA_epsilon=8
`
More details of the parameter settings can be found in the code.

### General-purpose attack
To further test the robustness of our method, we investigate the general-purpose attacks. We add the Gaussian random noise and random rotation transformation on the input images to perform the attacks. An example command is
`shell
python advtest_simple_transform.py --mean_var=10 --batch_size=50  --attack_method='Rotation' --attack_method_for_advtrain='MadryEtAl' --dataset=[dataset] --use_ball=True --use_MMLDA=True --use_advtrain=True --epoch=[epoch] --adv_ratio=1.0 --use_target=False --normalize_output_for_ball=False
`
The attack_method could be ‘Rotation’ for rotation transformation or ‘Gaussian’ for Gaussian noise. Detailed parameter settings are provided in the code.



            

          

      

      

    

  

    
      
          
            
  # AutoAttack

“Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks”Francesco Croce, Matthias HeinICML 2020[https://arxiv.org/abs/2003.01690](https://arxiv.org/abs/2003.01690)

We propose to use an ensemble of four diverse attacks to reliably evaluate robustness:
+ APGD-CE, our new step size-free version of PGD on the cross-entropy,
+ APGD-DLR, our new step size-free version of PGD on the new DLR loss,
+ FAB, which minimizes the norm of the adversarial perturbations [(Croce & Hein, 2019)](https://arxiv.org/abs/1907.02044),
+ Square Attack, a query-efficient black-box attack [(Andriushchenko et al, 2019)](https://arxiv.org/abs/1912.00049).

Note: we fix all the hyperparameters of the attacks, so no tuning is required to test every new classifier.

## News
+ [Sep 2021]



	We add [automatic checks](https://github.com/fra31/auto-attack/blob/master/flags_doc.md) for potential cases where the standard version of AA might be non suitable or sufficient for robustness evaluation.


	The evaluations of models on CIFAR-10 and CIFAR-100 are no longer maintained. Up-to-date leaderboards are available in [RobustBench](https://robustbench.github.io/).








	[Mar 2021] A version of AutoAttack wrt L1, which includes the extensions of APGD and Square Attack [(Croce & Hein, 2021)](https://arxiv.org/abs/2103.01208), is available!


	[Oct 2020] AutoAttack is used as standard evaluation in the new benchmark [RobustBench](https://robustbench.github.io/), which includes a [Model Zoo](https://github.com/RobustBench/robustbench) of the most robust classifiers! Note that this page and RobustBench’s leaderboards are maintained simultaneously.


	
	[Aug 2020]
	
	Updated version: in order to i) scale AutoAttack (AA) to datasets with many classes and ii) have a faster and more accurate evaluation, we use APGD-DLR and FAB with their targeted versions.


	We add the evaluation of models on CIFAR-100 wrt Linf and CIFAR-10 wrt L2.










	[Jul 2020] A short version of the paper is accepted at [ICML’20 UDL workshop](https://sites.google.com/view/udlworkshop2020/) for a spotlight presentation!


	[Jun 2020] The paper is accepted at ICML 2020!




# Adversarial Defenses Evaluation
We here list adversarial defenses, for many threat models, recently proposed and evaluated with the standard version of
AutoAttack (AA), including
+ untargeted APGD-CE (no restarts),
+ targeted APGD-DLR (9 target classes),
+ targeted FAB (9 target classes),
+ Square Attack (5000 queries).

See below for the more expensive AutoAttack+ (AA+) and more options.

We report the source of the model, i.e. if it is publicly available, if we received it from the authors or if we retrained it, the architecture, the clean accuracy and the reported robust accuracy (note that might be calculated on a subset of the test set or on different models trained with the same defense). The robust accuracy for AA is on the full test set.

We plan to add new models as they appear and are made available. Feel free to suggest new defenses to test!

To have a model added: please check [here](https://github.com/fra31/auto-attack/issues/new/choose).

Checkpoints: many of the evaluated models are available and easily accessible at this [Model Zoo](https://github.com/RobustBench/robustbench).

## CIFAR-10 - Linf
The robust accuracy is evaluated at eps = 8/255, except for those marked with * for which eps = 0.031, where eps is the maximal Linf-norm allowed for the adversarial perturbations. The eps used is the same set in the original papers.Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

Update: this is no longer maintained, but an up-to-date leaderboard is available in [RobustBench](https://robustbench.github.io/).

|#    |paper           |model     |architecture |clean         |report. |AA  |
|:---:|—|:---:|:—:|---:|—:|---:|
|**1**| [(Gowal et al., 2020)](https://arxiv.org/abs/2010.03593)‡| available*| WRN-70-16| 91.10| 65.87| 65.88|
|**2**| [(Gowal et al., 2020)](https://arxiv.org/abs/2010.03593)‡| *available*| WRN-28-10| 89.48| 62.76| 62.80|
|**3**| [(Wu et al., 2020a)](https://arxiv.org/abs/2010.01279)‡| *available*| WRN-34-15| 87.67| 60.65| 60.65|
|**4**| [(Wu et al., 2020b)](https://arxiv.org/abs/2004.05884)‡| *available*| WRN-28-10| 88.25| 60.04| 60.04|
|**5**| [(Carmon et al., 2019)](https://arxiv.org/abs/1905.13736)‡| *available*| WRN-28-10| 89.69| 62.5| 59.53|
|**6**| [(Gowal et al., 2020)](https://arxiv.org/abs/2010.03593)| *available*| WRN-70-16| 85.29| 57.14| 57.20|
|**7**| [(Sehwag et al., 2020)](https://github.com/fra31/auto-attack/issues/7)‡| *available*| WRN-28-10| 88.98| -| 57.14|
|**8**| [(Gowal et al., 2020)](https://arxiv.org/abs/2010.03593)| *available*| WRN-34-20| 85.64| 56.82| 56.86|
|**9**| [(Wang et al., 2020)](https://openreview.net/forum?id=rklOg6EFwS)‡| *available*| WRN-28-10| 87.50| 65.04| 56.29|
|**10**| [(Wu et al., 2020b)](https://arxiv.org/abs/2004.05884)| *available*| WRN-34-10| 85.36| 56.17| 56.17|
|**11**| [(Alayrac et al., 2019)](https://arxiv.org/abs/1905.13725)‡| *available*| WRN-106-8| 86.46| 56.30| 56.03|
|**12**| [(Hendrycks et al., 2019)](https://arxiv.org/abs/1901.09960)‡| *available*| WRN-28-10| 87.11| 57.4| 54.92|
|**13**| [(Pang et al., 2020c)](https://arxiv.org/abs/2010.00467)| *available*| WRN-34-20| 86.43| 54.39| 54.39|
|**14**| [(Pang et al., 2020b)](https://arxiv.org/abs/2002.08619)| *available*| WRN-34-20| 85.14| -| 53.74|
|**15**| [(Cui et al., 2020)](https://arxiv.org/abs/2011.11164)*| *available*| WRN-34-20| 88.70| 53.57| 53.57|
|**16**| [(Zhang et al., 2020b)](https://arxiv.org/abs/2002.11242)| *available*| WRN-34-10| 84.52| 54.36| 53.51|
|**17**| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569)| *available*| WRN-34-20| 85.34| 58| 53.42|
|**18**| [(Huang et al., 2020)](https://arxiv.org/abs/2002.10319)*| *available*| WRN-34-10| 83.48| 58.03| 53.34|
|**19**| [(Zhang et al., 2019b)](https://arxiv.org/abs/1901.08573)*| *available*| WRN-34-10| 84.92| 56.43| 53.08|
|**20**| [(Cui et al., 2020)](https://arxiv.org/abs/2011.11164)*| *available*| WRN-34-10| 88.22| 52.86| 52.86|
|**21**| [(Qin et al., 2019)](https://arxiv.org/abs/1907.02610v2)| *available*| WRN-40-8| 86.28| 52.81| 52.84|
|**22**| [(Chen et al., 2020a)](https://arxiv.org/abs/2003.12862)| *available*| RN-50 (x3)| 86.04| 54.64| 51.56|
|**23**| [(Chen et al., 2020b)](https://github.com/fra31/auto-attack/issues/26)| *available*| WRN-34-10| 85.32| 51.13| 51.12|
|**24**| [(Sitawarin et al., 2020)](https://github.com/fra31/auto-attack/issues/23)| *available*| WRN-34-10| 86.84| 50.72| 50.72|
|**25**| [(Engstrom et al., 2019)](https://github.com/MadryLab/robustness)| *available*| RN-50| 87.03| 53.29| 49.25|
|**26**| [(Kumari et al., 2019)](https://arxiv.org/abs/1905.05186)| *available*| WRN-34-10| 87.80| 53.04| 49.12|
|**27**| [(Mao et al., 2019)](http://papers.nips.cc/paper/8339-metric-learning-for-adversarial-robustness)| *available*| WRN-34-10| 86.21| 50.03| 47.41|
|**28**| [(Zhang et al., 2019a)](https://arxiv.org/abs/1905.00877)| *retrained*| WRN-34-10| 87.20| 47.98| 44.83|
|**29**| [(Madry et al., 2018)](https://arxiv.org/abs/1706.06083)| *available*| WRN-34-10| 87.14| 47.04| 44.04|
|**30**| [(Pang et al., 2020a)](https://arxiv.org/abs/1905.10626)| *available*| RN-32| 80.89| 55.0| 43.48|
|**31**| [(Wong et al., 2020)](https://arxiv.org/abs/2001.03994)| *available*| RN-18| 83.34| 46.06| 43.21|
|**32**| [(Shafahi et al., 2019)](https://arxiv.org/abs/1904.12843)| *available*| WRN-34-10| 86.11| 46.19| 41.47|
|**33**| [(Ding et al., 2020)](https://openreview.net/forum?id=HkeryxBtPB)| *available*| WRN-28-4| 84.36| 47.18| 41.44|
|**34**| [(Atzmon et al., 2019)](https://arxiv.org/abs/1905.11911)*| *available*| RN-18| 81.30| 43.17| 40.22|
|**35**| [(Moosavi-Dezfooli et al., 2019)](http://openaccess.thecvf.com/content_CVPR_2019/html/Moosavi-Dezfooli_Robustness_via_Curvature_Regularization_and_Vice_Versa_CVPR_2019_paper)| *authors*| WRN-28-10| 83.11| 41.4| 38.50|
|**36**| [(Zhang & Wang, 2019)](http://papers.nips.cc/paper/8459-defense-against-adversarial-attacks-using-feature-scattering-based-adversarial-training)| *available*| WRN-28-10| 89.98| 60.6| 36.64|
|**37**| [(Zhang & Xu, 2020)](https://openreview.net/forum?id=Syejj0NYvr&noteId=Syejj0NYvr)| *available*| WRN-28-10| 90.25| 68.7| 36.45|
|**38**| [(Jang et al., 2019)](http://openaccess.thecvf.com/content_ICCV_2019/html/Jang_Adversarial_Defense_via_Learning_to_Generate_Diverse_Attacks_ICCV_2019_paper.html)| *available*| RN-20| 78.91| 37.40| 34.95|
|**39**| [(Kim & Wang, 2020)](https://openreview.net/forum?id=rJlf_RVKwr)| *available*| WRN-34-10| 91.51| 57.23| 34.22|
|**40**| [(Wang & Zhang, 2019)](http://openaccess.thecvf.com/content_ICCV_2019/html/Wang_Bilateral_Adversarial_Training_Towards_Fast_Training_of_More_Robust_Models_ICCV_2019_paper.html)| *available*| WRN-28-10| 92.80| 58.6| 29.35|
|**41**| [(Xiao et al., 2020)](https://arxiv.org/abs/1905.10510)*| *available*| DenseNet-121| 79.28| 52.4| 18.50|
|**42**| [(Jin & Rinard, 2020)](https://arxiv.org/abs/2003.04286v1) | [*available](https://github.com/charlesjin/adversarial_regularization/blob/6a3704757dcc7c707ff38f8b9de6f2e9e27e0a89/pretrained/pretrained88.pth) | RN-18| 90.84| 71.22| 1.35|
|**43**| [(Mustafa et al., 2019)](https://arxiv.org/abs/1904.00887)| *available*| RN-110| 89.16| 32.32| 0.28|
|**44**| [(Chan et al., 2020)](https://arxiv.org/abs/1912.10185)| *retrained*| WRN-34-10| 93.79| 15.5| 0.26|

## CIFAR-100 - Linf
The robust accuracy is computed at eps = 8/255 in the Linf-norm, except for the models marked with * for which eps = 0.031 is used. Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).Update: this is no longer maintained, but an up-to-date leaderboard is available in [RobustBench](https://robustbench.github.io/).

|#    |paper           |model     |architecture |clean         |report. |AA  |
|:---:|—|:---:|:—:|---:|—:|---:|
|**1**| [(Gowal et al. 2020)](https://arxiv.org/abs/2010.03593)‡| *available*| WRN-70-16| 69.15| 37.70| 36.88|
|**2**| [(Cui et al., 2020)](https://arxiv.org/abs/2011.11164)*| *available*| WRN-34-20| 62.55| 30.20| 30.20|
|**3**| [(Gowal et al. 2020)](https://arxiv.org/abs/2010.03593)| *available*| WRN-70-16| 60.86| 30.67| 30.03|
|**4**| [(Cui et al., 2020)](https://arxiv.org/abs/2011.11164)*| *available*| WRN-34-10| 60.64| 29.33| 29.33|
|**5**| [(Wu et al., 2020b)](https://arxiv.org/abs/2004.05884)| *available*| WRN-34-10| 60.38| 28.86| 28.86|
|**6**| [(Hendrycks et al., 2019)](https://arxiv.org/abs/1901.09960)‡| *available*| WRN-28-10| 59.23| 33.5| 28.42|
|**7**| [(Cui et al., 2020)](https://arxiv.org/abs/2011.11164)*| *available*| WRN-34-10| 70.25| 27.16| 27.16|
|**8**| [(Chen et al., 2020b)](https://github.com/fra31/auto-attack/issues/26)| *available*| WRN-34-10| 62.15| -| 26.94|
|**9**| [(Sitawarin et al., 2020)](https://github.com/fra31/auto-attack/issues/22)| *available*| WRN-34-10| 62.82| 24.57| 24.57|
|**10**| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569)| *available*| RN-18| 53.83| 28.1| 18.95|

## MNIST - Linf
The robust accuracy is computed at eps = 0.3 in the Linf-norm.

|#    |paper           |model     |clean         |report. |AA  |
|:---:|—|:---:|—:|---:|—:|
|**1**| [(Gowal et al., 2020)](https://arxiv.org/abs/2010.03593)| *available*| 99.26| 96.38| 96.34|
|**2**| [(Zhang et al., 2020a)](https://arxiv.org/abs/1906.06316)| *available*| 98.38| 96.38| 93.96|
|**3**| [(Gowal et al., 2019)](https://arxiv.org/abs/1810.12715)| *available*| 98.34| 93.78| 92.83|
|**4**| [(Zhang et al., 2019b)](https://arxiv.org/abs/1901.08573)| *available*| 99.48| 95.60| 92.81|
|**5**| [(Ding et al., 2020)](https://openreview.net/forum?id=HkeryxBtPB)| *available*| 98.95| 92.59| 91.40|
|**6**| [(Atzmon et al., 2019)](https://arxiv.org/abs/1905.11911)| *available*| 99.35| 97.35| 90.85|
|**7**| [(Madry et al., 2018)](https://arxiv.org/abs/1706.06083)| *available*| 98.53| 89.62| 88.50|
|**8**| [(Jang et al., 2019)](http://openaccess.thecvf.com/content_ICCV_2019/html/Jang_Adversarial_Defense_via_Learning_to_Generate_Diverse_Attacks_ICCV_2019_paper.html)| *available*| 98.47| 94.61| 87.99|
|**9**| [(Wong et al., 2020)](https://arxiv.org/abs/2001.03994)| *available*| 98.50| 88.77| 82.93|
|**10**| [(Taghanaki et al., 2019)](http://openaccess.thecvf.com/content_CVPR_2019/html/Taghanaki_A_Kernelized_Manifold_Mapping_to_Diminish_the_Effect_of_Adversarial_CVPR_2019_paper.html)| *retrained*| 98.86| 64.25| 0.00|

## CIFAR-10 - L2
The robust accuracy is computed at eps = 0.5 in the L2-norm.Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

Update: this is no longer maintained, but an up-to-date leaderboard is available in [RobustBench](https://robustbench.github.io/).

|#    |paper           |model     |architecture |clean         |report. |AA  |
|:---:|—|:---:|:—:|---:|—:|---:|
|**1**| [(Gowal et al., 2020)](https://arxiv.org/abs/2010.03593)‡| *available*| WRN-70-16| 94.74| -| 80.53|
|**2**| [(Gowal et al., 2020)](https://arxiv.org/abs/2010.03593)| *available*| WRN-70-16| 90.90| -| 74.50|
|**3**| [(Wu et al., 2020b)](https://arxiv.org/abs/2004.05884)| *available*| WRN-34-10| 88.51| 73.66| 73.66|
|**4**| [(Augustin et al., 2020)](https://arxiv.org/abs/2003.09461)‡| *authors*| RN-50| 91.08| 73.27| 72.91|
|**5**| [(Engstrom et al., 2019)](https://github.com/MadryLab/robustness)| *available*| RN-50| 90.83| 70.11| 69.24|
|**6**| [(Rice et al., 2020)](https://arxiv.org/abs/2002.11569)| *available*| RN-18| 88.67| 71.6| 67.68|
|**7**| [(Rony et al., 2019)](https://arxiv.org/abs/1811.09600)| *available*| WRN-28-10| 89.05| 67.6| 66.44|
|**8**| [(Ding et al., 2020)](https://openreview.net/forum?id=HkeryxBtPB)| *available*| WRN-28-4| 88.02| 66.18| 66.09|

# How to use AutoAttack

### Installation

`
pip install git+https://github.com/fra31/auto-attack
`

### PyTorch models
Import and initialize AutoAttack with

`python
from autoattack import AutoAttack
adversary = AutoAttack(forward_pass, norm='Linf', eps=epsilon, version='standard')
`

where:
+ forward_pass returns the logits and takes input with components in [0, 1] (NCHW format expected),
+ norm = [‘Linf’ | ‘L2’] is the norm of the threat model,
+ eps is the bound on the norm of the adversarial perturbations,
+ version = ‘standard’ uses the standard version of AA.

To apply the standard evaluation, where the attacks are run sequentially on batches of size bs of images, use

`python
x_adv = adversary.run_standard_evaluation(images, labels, bs=batch_size)
`

To run the attacks individually, use

`python
dict_adv = adversary.run_standard_evaluation_individual(images, labels, bs=batch_size)
`

which returns a dictionary with the adversarial examples found by each attack.

To specify a subset of attacks add e.g. adversary.attacks_to_run = [‘apgd-ce’].

### TensorFlow models
To evaluate models implemented in TensorFlow 1.X, use

```python
from autoattack import utils_tf
model_adapted = utils_tf.ModelAdapter(logits, x_input, y_input, sess)

from autoattack import AutoAttack
adversary = AutoAttack(model_adapted, norm=’Linf’, eps=epsilon, version=’standard’, is_tf_model=True)
```

where:
+ logits is the tensor with the logits given by the model,
+ x_input is a placeholder for the input for the classifier (NHWC format expected),
+ y_input is a placeholder for the correct labels,
+ sess is a TF session.

If TensorFlow’s version is 2.X, use

```python
from autoattack import utils_tf2
model_adapted = utils_tf2.ModelAdapter(tf_model)

from autoattack import AutoAttack
adversary = AutoAttack(model_adapted, norm=’Linf’, eps=epsilon, version=’standard’, is_tf_model=True)
```

where:
+ tf_model is tf.keras model without activation function ‘softmax’

The evaluation can be run in the same way as done with PT models.

### Examples
Examples of how to use AutoAttack can be found in examples/. To run the standard evaluation on a pretrained
PyTorch model on CIFAR-10 use
`
python eval.py [--individual] --version=['standard' | 'plus']
`
where the optional flags activate respectively the individual evaluations (all the attacks are run on the full test set) and the version of AA to use (see below).

## Other versions
### AutoAttack+
A more expensive evaluation can be used specifying version=’plus’ when initializing AutoAttack. This includes
+ untargeted APGD-CE (5 restarts),
+ untargeted APGD-DLR (5 restarts),
+ untargeted FAB (5 restarts),
+ Square Attack (5000 queries),
+ targeted APGD-DLR (9 target classes),
+ targeted FAB (9 target classes).

### Randomized defenses
In case of classifiers with stochastic components one can combine AA with Expectation over Transformation (EoT) as in [(Athalye et al., 2018)](https://arxiv.org/abs/1802.00420) specifying version=’rand’ when initializing AutoAttack.
This runs
+ untargeted APGD-CE (no restarts, 20 iterations for EoT),
+ untargeted APGD-DLR (no restarts, 20 iterations for EoT).

### Custom version
It is possible to customize the attacks to run specifying version=’custom’ when initializing the attack and then, for example,
```python
if args.version == ‘custom’:


adversary.attacks_to_run = [‘apgd-ce’, ‘fab’]
adversary.apgd.n_restarts = 2
adversary.fab.n_restarts = 2




```

## Other options
### Random seed
It is possible to fix the random seed used for the attacks with, e.g., adversary.seed = 0. In this case the same seed is used for all the attacks used, otherwise a different random seed is picked for each attack.

### Log results
To log the intermediate results of the evaluation specify log_path=/path/to/logfile.txt when initializing the attack.

## Citation
```
@inproceedings{croce2020reliable,


title = {Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks},
author = {Francesco Croce and Matthias Hein},
booktitle = {ICML},
year = {2020}





}




            

          

      

      

    

  

    
      
          
            
  ## On the usage of AutoAttack

We here describe cases where the standard version of AA might be non suitable or sufficient for robustness evaluation. While AA is designed to generalize across defenses, there are categories like
randomized, non differentiable or dynamic defenses for which it cannot be applied in the standard version, since those rely on differet principles than commonly used robust models. In such cases,
specific modifications or adaptive attacks [(Tramèr et al., 2020)](https://arxiv.org/abs/2002.08347) might be necessary.

## Checks
We introduce a few automatic checks to warn the user in case the classifier presents behaviors typical of non standard models. Below we describe the type of flags which might be raised and provide
some suggestions about how the robustness evaluation could be improved in the specific cases. Note that some of the checks are in line with the analyses and suggestions by recent works
([Carlini et al., 2019](https://arxiv.org/abs/1902.06705); [Croce et al., 2020](https://arxiv.org/abs/2010.09670); [Pintor et al., 2021](https://arxiv.org/abs/2106.09947)) which provide guidelines for
evaluating robustness and detecting failures of attacks.

### Randomized defenses
Raised if the clean accuracy of the classifier on a batch or the corresponding logits vary across multiple runs.Explanation: non deterministic classifiers need to be evaluated with specific techniques e.g. EoT [(Athalye et al., 2018)](http://proceedings.mlr.press/v80/athalye18a.html) and mislead
standard attacks. We suggest to use AA with version=’rand’, which inclueds APGD combined with EoT. Note that there might still be some random components
in the network which however do not change the predictions or the logits beyond the chosen threshold.

### Softmax output is given
Raised if the model outputs a probability distribution. Explanation: AA expects the model to return logits, i.e. pre-softmax output of the network. If this is not the case, although the classification is unaltered,
there might be numerical instabilities which prevent the gradient-based attacks to perform well.

### Zero gradient
Raised if the gradient at the (random) starting point of APGD is zero for any image when using the DLR loss. Explanation: zero gradient prevents progress in gradient-based iterative attacks. A source of it could be connected to the cross-entropy loss and the scale of the logits, but a remedy consists in
using margin based losses ([Carlini & Wagner, 2017](https://ieeexplore.ieee.org/abstract/document/7958570); [Croce & Hein, 2020](https://arxiv.org/abs/2003.01690)). Vanishing gradients can be also due to specific
components of the networks, like input quantization (see e.g. [here](https://github.com/fra31/auto-attack/issues/44)), which do not allow
backpropagation. In this case one might use BPDA [(Athalye et al., 2018)](http://proceedings.mlr.press/v80/athalye18a.html), which approximates such functions with differentiable counterparts, or black-box attacks, especially those, like Square Attack, which do not rely on
gradient estimation.

### Square Attack improves the robustness evaluation
Raised if Square Attack reduces the robust accuracy yielded by the white-box attacks. Explanation: as mentioned by [Carlini et al. (2019)](https://arxiv.org/abs/1902.06705), black-box attacks performing better than white-box ones is one of the hints of overestimation of robustness. In this case one might run
Square Attack with higher budget (more queries, random restarts) or design adaptive attacks, since it is likely that the tested defense has some features preventing standard gradient-based methods
to be effective.

### Optimization at inference time (only PyTorch models)
Raised if standard PyTorch functions for computing the gradients are called when running inference with the given classifier. Explanation: several defenses which include some optimization loop in the inference procedure have appeared. While AA can give a first estimation of the robustness, it is necessary in this case
to design adaptive attacks, since such models usually modify the input before classifying it, which requires specific techniques for evaluation. Note that this check is non trivial to make automatic,
and we invite the user to be aware that AA might be not the best option to evaluate dynamic defenses.



            

          

      

      

    

  

    
      
          
            
  # CIFAR10 Adversarial Examples Challenge

Recently, there has been much progress on adversarial attacks against neural networks, such as the [cleverhans](https://github.com/tensorflow/cleverhans) library and the code by [Carlini and Wagner](https://github.com/carlini/nn_robust_attacks).
We now complement these advances by proposing an attack challenge for the
[CIFAR10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) which follows the
format of [our earlier MNIST challenge](https://github.com/MadryLab/mnist_challenge).
We have trained a robust network, and the objective is to find a set of adversarial examples on which this network achieves only a low accuracy.
To train an adversarially-robust network, we followed the approach from our recent paper:

Towards Deep Learning Models Resistant to Adversarial Attacks <br>
Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, Adrian Vladu <br>
https://arxiv.org/abs/1706.06083.

As part of the challenge, we release both the training code and the network architecture, but keep the network weights secret.
We invite any researcher to submit attacks against our model (see the detailed instructions below).
We will maintain a leaderboard of the best attacks for the next two months and then publish our secret network weights.

Analogously to our MNIST challenge, the goal of this challenge is to clarify the state-of-the-art for adversarial robustness on CIFAR10. Moreover, we hope that future work on defense mechanisms will adopt a similar challenge format in order to improve reproducibility and empirical comparisons.

Update 2017-12-10: We released our secret model. You can download it by running python fetch_model.py secret. As of Dec 10 we are no longer accepting black-box challenge submissions. We have set up a leaderboard for white-box attacks on the (now released) secret model. The submission format is the same as before. We plan to continue evaluating submissions and maintaining the leaderboard for the foreseeable future.

## Black-Box Leaderboard (Original Challenge)


Attack                                 | Submitted by  | Accuracy | Submission Date |

————————————– | ————- | ——– | —- |

PGD on the cross-entropy loss for the<br> adversarially trained public network     | (initial entry)       | 63.39%   | Jul 12, 2017    |

PGD on the [CW](https://github.com/carlini/nn_robust_attacks) loss for the<br> adversarially trained public network     | (initial entry)       | 64.38%   | Jul 12, 2017    |

FGSM on the [CW](https://github.com/carlini/nn_robust_attacks) loss for the<br> adversarially trained public network     | (initial entry)       | 67.25%   | Jul 12, 2017    |

FGSM on the [CW](https://github.com/carlini/nn_robust_attacks) loss for the<br> naturally trained public network     | (initial entry)       | 85.23%   | Jul 12, 2017    |



## White-Box Leaderboard


Attack                                 | Submitted by  | Accuracy | Submission Date |

————————————– | ————- | ——– | —- |

Guided Local Attack | Siyuan Yi | 43.95%   | Aug 2, 2021    |

[EWR-PGD](https://github.com/liuye6666/EWR-PGD) | Ye Liu | 43.96%   | Sep 8, 2020    |

[PGD attack with Output Diversified Initialization](https://arxiv.org/abs/2003.06878) | Yusuke Tashiro | 43.99%   | Feb 15, 2020    |

[MultiTargeted](https://arxiv.org/abs/1910.09338) | Sven Gowal | 44.03%   | Aug 28, 2019    |

[FAB: Fast Adaptive Boundary Attack](https://github.com/fra31/fab-attack) | Francesco Croce       | 44.51%   | Jun 7, 2019    |

[Distributionally Adversarial Attack](https://github.com/tianzheng4/Distributionally-Adversarial-Attack) | Tianhang Zheng       | 44.71%   | Aug 21, 2018    |

20-step PGD on the cross-entropy loss<br> with 10 random restarts | Tianhang Zheng       | 45.21%   | Aug 24, 2018    |

20-step PGD on the cross-entropy loss | (initial entry)       | 47.04%   | Dec 10, 2017    |

20-step PGD on the [CW](https://github.com/carlini/nn_robust_attacks) loss | (initial entry)       | 47.76%   | Dec 10, 2017    |

FGSM on the [CW](https://github.com/carlini/nn_robust_attacks) loss | (initial entry)       | 54.92%   | Dec 10, 2017    |

FGSM on the cross-entropy loss | (initial entry)       | 55.55%   | Dec 10, 2017    |



## Format and Rules

The objective of the challenge is to find black-box (transfer) attacks that are effective against our CIFAR10 model.
Attacks are allowed to perturb each pixel of the input image by at most epsilon=8.0 on a 0-255 pixel scale.
To ensure that the attacks are indeed black-box, we release our training code and model architecture, but keep the actual network weights secret.

We invite any interested researchers to submit attacks against our model.
The most successful attacks will be listed in the leaderboard above.
As a reference point, we have seeded the leaderboard with the results of some standard attacks.

### The CIFAR10 Model

We used the code published in this repository to produce an adversarially robust model for CIFAR10 classification. The model is a residual convolutional neural network consisting of five residual units and a fully connected layer. This architecture is derived from the “w32-10 wide” variant of the [Tensorflow model repository](https://github.com/tensorflow/models/blob/master/resnet/resnet_model.py).
The network was trained against an iterative adversary that is allowed to perturb each pixel by at most epsilon=8.0.

The random seed used for training and the trained network weights will be kept secret.

The sha256() digest of our model file is:
`
555be6e892372599380c9da5d5f9802f9cbd098be8a47d24d96937a002305fd4
`
We will release the corresponding model file on September 15 2017, which is roughly two months after the start of this competition. Edit: We are extending the deadline for submitting attacks to October 15th due to requests.

### The Attack Model

We are interested in adversarial inputs that are derived from the CIFAR10 test set.
Each pixel can be perturbed by at most epsilon=8.0 from its initial value on the 0-255 pixel scale.
All pixels can be perturbed independently, so this is an l_infinity attack.

### Submitting an Attack

Each attack should consist of a perturbed version of the CIFAR10 test set.
Each perturbed image in this test set should follow the above attack model.

The adversarial test set should be formated as a numpy array with one row per example and each row containing a 32x32x3
array of pixels.
Hence the overall dimensions are 10,000x32x32x3.
Each pixel must be in the [0, 255] range.
See the script pgd_attack.py for an attack that generates an adversarial test set in this format.

In order to submit your attack, save the matrix containing your adversarial examples with numpy.save and email the resulting file to cifar10.challenge@gmail.com.
We will then run the run_attack.py script on your file to verify that the attack is valid and to evaluate the accuracy of our secret model on your examples.
After that, we will reply with the predictions of our model on each of your examples and the overall accuracy of our model on your evaluation set.

If the attack is valid and outperforms all current attacks in the leaderboard, it will appear at the top of the leaderboard.
Novel types of attacks might be included in the leaderboard even if they do not perform best.

We strongly encourage you to disclose your attack method.
We would be happy to add a link to your code in our leaderboard.

## Overview of the Code
The code consists of seven Python scripts and the file config.json that contains various parameter settings.

### Running the code
- python train.py: trains the network, storing checkpoints along


the way.





	
	python eval.py: an infinite evaluation loop, processing each new
	checkpoint as it is created while logging summaries. It is intended
to be run in parallel with the train.py script.







	
	python pgd_attack.py:  applies the attack to the CIFAR10 eval set and
	stores the resulting adversarial eval set in a .npy file. This file is
in a valid attack format for our challenge.







	
	python run_attack.py: evaluates the model on the examples in
	the .npy file specified in config, while ensuring that the adversarial examples
are indeed a valid attack. The script also saves the network predictions in pred.npy.







	
	python fetch_model.py name: downloads the pre-trained model with the
	specified name (at the moment adv_trained or natural), prints the sha256
hash, and places it in the models directory.







	cifar10_input.py provides utility functions and classes for loading the CIFAR10 dataset.




### Parameters in config.json

Model configuration:
- model_dir: contains the path to the directory of the currently


trained/evaluated model.




Training configuration:
- tf_random_seed: the seed for the RNG used to initialize the network


weights.





	numpy_random_seed: the seed for the RNG used to pass over the dataset in random order


	max_num_training_steps: the number of training steps.


	
	num_output_steps: the number of training steps between printing
	progress in standard output.







	
	num_summary_steps: the number of training steps between storing
	tensorboard summaries.







	
	num_checkpoint_steps: the number of training steps between storing
	model checkpoints.







	training_batch_size: the size of the training batch.




Evaluation configuration:
- num_eval_examples: the number of CIFAR10 examples to evaluate the


model on.





	eval_batch_size: the size of the evaluation batches.


	eval_on_cpu: forces the eval.py script to run on the CPU so it does not compete with train.py for GPU resources.




Adversarial examples configuration:
- epsilon: the maximum allowed perturbation per pixel.
- k: the number of PGD iterations used by the adversary.
- a: the size of the PGD adversary steps.
- random_start: specifies whether the adversary will start iterating


from the natural example or a random perturbation of it.





	
	loss_func: the loss function used to run pgd on. xent corresponds to the
	standard cross-entropy loss, cw corresponds to the loss function
of [Carlini and Wagner](https://arxiv.org/abs/1608.04644).







	
	store_adv_path: the file in which adversarial examples are stored.
	Relevant for the pgd_attack.py and run_attack.py scripts.









## Example usage
After cloning the repository you can either train a new network or evaluate/attack one of our pre-trained networks.
#### Training a new network
* Start training by running:
`
python train.py
`
* (Optional) Evaluation summaries can be logged by simultaneously


running:




`
python eval.py
`
#### Download a pre-trained network
* For an adversarially trained network, run
`
python fetch_model.py adv_trained
`
and use the config.json file to set “model_dir”: “models/adv_trained”.
* For a naturally trained network, run
`
python fetch_model.py natural
`
and use the config.json file to set “model_dir”: “models/naturally_trained”.
#### Test the network
* Create an attack file by running
`
python pgd_attack.py
`
* Evaluate the network with
`
python run_attack.py
`



            

          

      

      

    

  

    
      
          
            
  # Train CIFAR10 with PyTorch

I’m playing with [PyTorch](http://pytorch.org/) on the CIFAR10 dataset.

## Prerequisites
- Python 3.6+
- PyTorch 1.0+

## Training
```
# Start training with:
python main.py

# You can manually resume the training with:
python main.py –resume –lr=0.01
```

## Accuracy
| Model             | Acc.        |
| —————– | ———– |
| [VGG16](https://arxiv.org/abs/1409.1556)              | 92.64%      |
| [ResNet18](https://arxiv.org/abs/1512.03385)          | 93.02%      |
| [ResNet50](https://arxiv.org/abs/1512.03385)          | 93.62%      |
| [ResNet101](https://arxiv.org/abs/1512.03385)         | 93.75%      |
| [RegNetX_200MF](https://arxiv.org/abs/2003.13678)     | 94.24%      |
| [RegNetY_400MF](https://arxiv.org/abs/2003.13678)     | 94.29%      |
| [MobileNetV2](https://arxiv.org/abs/1801.04381)       | 94.43%      |
| [ResNeXt29(32x4d)](https://arxiv.org/abs/1611.05431)  | 94.73%      |
| [ResNeXt29(2x64d)](https://arxiv.org/abs/1611.05431)  | 94.82%      |
| [SimpleDLA](https://arxiv.org/abs/1707.064)           | 94.89%      |
| [DenseNet121](https://arxiv.org/abs/1608.06993)       | 95.04%      |
| [PreActResNet18](https://arxiv.org/abs/1603.05027)    | 95.11%      |
| [DPN92](https://arxiv.org/abs/1707.01629)             | 95.16%      |
| [DLA](https://arxiv.org/pdf/1707.06484.pdf)           | 95.47%      |



            

          

      

      

    

  

    
      
          
            
  # Fast adversarial training using FGSM

A repository that implements the fast adversarial training code using an FGSM adversary, capable of training a robust CIFAR10 classifier in 6 minutes and a robust ImageNet classifier in 12 hours. Created by [Eric Wong](https://riceric22.github.io), [Leslie Rice](https://leslierice1.github.io/), and [Zico Kolter](http://zicokolter.com). See our paper on arXiv [here][paper], which was inspired by the free adversarial training paper [here][freepaper] by Shafahi et al. (2019).

[paper]: https://arxiv.org/abs/2001.03994
[freepaper]: https://arxiv.org/abs/1904.12843

## News
+ 12/19/2019 - Accepted to ICLR 2020
+ 1/14/2019 - arXiv posted and repository release

## What is in this repository?
+ An implementation of the FGSM adversarial training method with randomized initialization for MNIST, CIFAR10, and ImageNet
+ [Cyclic learning rates](https://arxiv.org/abs/1506.01186) and mixed precision training using the [apex](https://nvidia.github.io/apex/) library to achieve DAWNBench-like speedups
+ Pre-trained models using this code base
+ The ImageNet code is mostly forked from the [free adversarial training repository](https://github.com/mahyarnajibi/FreeAdversarialTraining), with the corresponding modifications for fast FGSM adversarial training

## Installation and usage
+ All examples can be run without mixed-precision with PyTorch v1.0 or higher
+ To use mixed-precision training, follow the apex installation instructions [here](https://github.com/NVIDIA/apex#quick-start)

## But wait, I thought FGSM training didn’t work!
As one of the earliest methods for generating adversarial examples, the Fast Gradient Sign Method (FGSM) is also known to be one of the weakest. It has largely been replaced by the PGD-based attacked, and it’s use as an attack has become highly discouraged when [evaluating adversarial robustness](https://arxiv.org/abs/1902.06705). Afterall, early attempts at using FGSM adversarial training (including variants of randomized FGSM) were unsuccessful, and this was largely attributed to the weakness of the attack.

However, we discovered that a fairly minor modification to the random initialization for FGSM adversarial training allows it to perform as well as the much more expensive PGD adversarial training. This was quite surprising to us, and suggests that one does not need very strong adversaries to learn robust models! As a result, we pushed the FGSM adversarial training to the limit, and found that by incorporating various techniques for fast training used in the [DAWNBench](https://dawn.cs.stanford.edu/benchmark/) competition, we could learn robust architectures an order of magnitude faster than before, while achieving the same degrees of robustness. A couple of the results from the paper are highlighted in the table below.



| CIFAR10 Acc | CIFAR10 Adv Acc (eps=8/255) | Time (minutes) |



——–:| ———–:|----------------------------:|—————:|

FGSM     |      86.06% |                      46.06% |             12 |

Free     |      85.96% |                      46.33% |            785 |

PGD      |      87.30% |                      45.80% |           4966 |





| ImageNet Acc | ImageNet Adv Acc (eps=2/255) | Time (hours) |



——–:| ————:|-----------------------------:|————-:|

FGSM     |       60.90% |                       43.46% |           12 |

Free     |       64.37% |                       43.31% |           52 |



## But I’ve tried FGSM adversarial training before, and it didn’t work!
In our experiments, we discovered several failure modes which would cause FGSM adversarial training to ``catastrophically fail’’, like in the following plot.

![overfitting](https://github.com/locuslab/fast_adversarial/blob/master/overfitting_error_curve.png)

If FGSM adversarial training hasn’t worked for you in the past, then it may be because of one of the following reasons (which we present as a non-exhaustive list of ways to fail):


	FGSM step size is too large, forcing the adversarial examples to cluster near the boundary


	Random initialization only covers a smaller subset of the threat model


	Long training with many epochs and fine tuning with very small learning rates




All of these pitfalls can be avoided by simply using early stopping based on a subset of the training data to evaluate the robust accuracy with respect to PGD, as the failure mode for FGSM adversarial training occurs quite rapidly (going to 0% robust accuracy within the span of a couple epochs)

## Why does this matter if I still want to use PGD adversarial training in my experiments?

The speedups gained from using mixed-precision arithmetic and cyclic learning rates can still be reaped regardless of what training regimen you end up using! For example, these techniques can speed up CIFAR10 PGD adversarial training by almost 2 orders of magnitude, reducing training time by about 3.5 days to just over 1 hour. The engineering costs of installing the apex library and changing the learning rate schedule are miniscule in comparison to the time saved from using these two techniques, and so even if you don’t use FGSM adversarial training, you can still benefit from faster experimentation with the DAWNBench improvements.



            

          

      

      

    

  

    
      
          
            
  ## Fast is Better Than Free: CIFAR10

### Requirements:
Python 3.6

Install the required packages:
`
$ pip install -r requirements.txt
`

Follow the instructions below to install apex:
`
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
`

### Trained model weights
Trained model weights can be found here: https://drive.google.com/open?id=1W2zGHyxTPgHhWln1kpHK5h-HY9kwfKfl



            

          

      

      

    

  

    
      
          
            
  # Fast Adversarial Training
This is a supplemental material containing the code to run Fast is better than
free: revisiting adversarial training, submitted to ICLR 2020.

The framework used is a modified version of the [Free Adversarial Training](https://github.com/mahyarnajibi/FreeAdversarialTraining/blob/master/main_free.py) repository, which in turn was adapted from the [official PyTorch repository](https://github.com/pytorch/examples/blob/master/imagenet).

## Installation
1. Install [PyTorch](https://github.com/pytorch/examples/blob/master/imagenet).
2. Install the required python packages. All packages can be installed by running the following command:
`bash
pip install -r requirements.txt
`
3. Download and prepare the ImageNet dataset. You can use [this script](https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh),
provided by the PyTorch repository, to move the validation subset to the labeled subfolders.
4. Prepare resized versions of the ImageNet dataset, you can use resize.py provided in this repository.
5. Install [Apex](https://github.com/NVIDIA/apex) to use half precision speedup.

## Training a model
Scripts to robustly train an ImageNet classifier for epsilon radii of 2/255 and 4/255 are provided in run_fast_2px.sh and run_fast_4px.sh. These run the main code module main_free.py using the configurations provided in the configs/ folder. To run the 50 step PGD adversary with 10 restarts, we also provide run_eval.sh. All parameters can be modified by adjusting the configuration files in the configs/ folder.

## Model weights
We also provide the model weights after training with these scripts, which can be found in this [Google drive folder](https://drive.google.com/open?id=1W2zGHyxTPgHhWln1kpHK5h-HY9kwfKfl). To use these with the provided evaluation script, either adjust the path to the model weights in the run_eval.sh script or rename the provided model weights accordingly.



            

          

      

      

    

  

    
      
          
            
  # fast_is_better_than_free_MNIST

To train, run

python train_mnist.py –fname models/fgsm.pth

which runs FGSM training with the default parameters. To run the evaluation with default parameters (50 iterations with step size 0.01 and 10 random restarts), run

python evaluate_mnist.py –fname models/fgsm.pth

To run PGD adversarial training with the same parameters as those used [here](https://github.com/MadryLab/mnist_challenge/blob/master/config.json), run

python train_mnist.py –fname models/pgd_madry.pth –attack pgd –alpha 0.01 –lr-type flat –lr-max 0.0001 –epochs 100 –batch-size 50



            

          

      

      

    

  

    
      
          
            
  # Free Adversarial Training
This repository belongs to the [Free Adversarial Training](https://arxiv.org/abs/1904.12843 “Free Adversarial Training”) paper.
The implementation is inspired by [CIFAR10 Adversarial Example Challenge](https://github.com/MadryLab/cifar10_challenge “Madry’s CIFAR10 Challenge”) so to them we give the credit.
This repo is for the CIFAR-10 and CIFAR-100 datasets and is in Tensorflow. Our Free-m models can acheive comparable performance with conventional PGD adversarial training at a fraction of the time.

__News!__: We have released our [ImageNet implementation of Free adversarial training in Pytorch](https://github.com/mahyarnajibi/FreeAdversarialTraining) !

###### CIFAR-10 WRN 32-10 (L-inf epsilon=8):


Model | Natural | PGD-100 | CW-100 | 10 restart PGD-20 | train-time (min) |

— | — | — | — | — | — |

Natrual | 95.01 | 0.00 | 0.00| 0.00 | 780 |

Free-2 | 91.45 | 33.20 | 34.57 | 33.41 | 816 |

Free-4 | 87.83 | 40.35 | 41.96 | 40.73 | 800 |

Free-8 | 85.96 | 46.19 | 46.60 | 46.33 | 785 |

Free-10 |83.94 | 45.79 | 45.86 | 45.94 | 785 |



|Madry 7-PGD (public model) | 87.25 | 45.29 | 46.52 | 45.53 | 5418 |

###### CIFAR-100 WRN 32-10 (L-inf epsilon=8):
| Model | Natural | PGD-20 | PGD-100  | train-time (min) |
| — | — | — | — | — |
| Natrual | 78.84 | 0.00 | 0.00 | 811 |
| Free-2 | 69.20 | 15.37 | 14.86 | 816 |
| Free-4 | 65.28 | 20.64 | 20.15 | 767 |
| Free-8 | 62.13 | 25.88 | 25.58 | 780 |
| Free-10 | 59.27 | 25.15 | 24.88 | 776 |
| Madry 2-PGD trained | 67.94 | 17.08 | 16.50 | 2053 |
| Madry 7-PGD trained | 59.87 | 22.76 | 22.52 | 5157 |

## Demo
To train a new robust model for free! run the following command specifying the replay parameter m:

`bash
python free_train.py -m 8
`

To evaluate a robust model using PGD-20 with 2 random restarts run:

`bash
python multi_restart_pgd_attack.py --model_dir $MODEL_DIR --num_restarts 2
`
Note that if you have trained a CIFAR-100 model, even for evaluation, you should pass the dataset argument. For example:
`bash
python multi_restart_pgd_attack.py --model_dir $MODEL_DIR_TO_CIFAR100 --num_restarts 2 -d cifar100
`

## Requirements
To install all the requirements plus tensorflow for multi-gpus run: (Inspired By [Illarion ikhlestov](https://github.com/ikhlestov/vision_networks “Densenet Implementation”) )

`bash
pip install -r requirements/gpu.txt
`

Alternatively, to install the requirements plus tensorflow for cpu run:
`bash
pip install -r requirements/cpu.txt
`

To prepare the data, please see [Datasets section](https://github.com/ashafahi/free_adv_train/tree/master/datasets “Dataset readme”).

If you find the paper or the code useful for your study, please consider citing the free training paper:
```bash
@article{shafahi2019adversarial,


title={Adversarial Training for Free!},
author={Shafahi, Ali and Najibi, Mahyar and Ghiasi, Amin and Xu, Zheng and Dickerson, John and Studer, Christoph and Davis, Larry S and Taylor, Gavin and Goldstein, Tom},
journal={arXiv preprint arXiv:1904.12843},
year={2019}





}




            

          

      

      

    

  

    
      
          
            
  ## How to set up datasets
By default, our implementation assumes that you have located all datasets in the ./datasets folder.
The implementation works for
[CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html),
[CIFAR100](https://www.cs.toronto.edu/~kriz/cifar.html), and


If you have already prepared the datasets on your machine, simply by copying the dataset folders into the ./datasets and renaming the copied folder as one of the following names: cifar10, cifar100.




Afterwards, just pass the name of the dataset as a parameter:
`bash
python train.py --dataset=DATASET_NAME
`

However, we find this way a bad practice,
since for every implementation you will keep a copy of each dataset and that will waste the hard disk on machine.
Alternatively, you may keep one folder on your machine for all the experiments that you have to avoid wasting your disk.
To set the directory path for the implementation to find your external data-sets folder,
use the following data_dir argument:
`bash
python train.py --dataset=DATASET_NAME --data_dir=PATH_TO_YOUR_DATASET_DIR
`

The only drawback is the fact that you might be running many different experiments on your machine and you don’t want to rename your CIFAR10 folder to cifar10, i.e. maybe for another experiment you need to name the file as something like cifar10-dataset or something similar, as a result, you might need to avoid renaming your dataset folder to cifar10.
The final solution that we find very helpful is to create a symbolic link to your existing data-sets (Works for UNIX based OS e.g MacOS and linux)
This way, not only we avoid wasting disk on our machine, we also avoid renaming the folders.
For instance use the following commands:
`bash
ln -s PATH_TO_YOUR_CIFAR10_DATASET ./datasets/cifar10
`
See [tutorail](https://kb.iu.edu/d/abbe “ln tutorail”) for more info about Symbolic Links.



            

          

      

      

    

  

    
      
          
            
  # HYDRA: Pruning Adversarially Robust Neural Networks (NeurIPS 2020)

Repository with code to reproduce the results and checkpoints for compressed networks in [our paper on novel pruning techniques with robust training](https://arxiv.org/abs/2002.10509). This repository supports all four robust training objectives: iterative adversarial training, randomized smoothing, MixTrain, and CROWN-IBP.

Following is a snippet of key results where we showed that accounting the robust training objective in pruning strategy can lead to large gains in the robustness of pruned networks.

![results_table](/images/results_table.png)

In particular, the improvement arises from letting the robust training objective controlling which connections to prune. In almost all cases, it prefers to pruned certain high-magnitude weights while preserving other small magnitude weights, which is orthogonal to the strategy in well-established least-weight magnitude (LWM) based pruning.

![weight_histogram](/images/weight_histogram.png)

## Updates
April 30, 2020: [Checkpoints for WRN-28-10](https://www.dropbox.com/sh/56yyfy16elwbnr8/AADmr7bXgFkrNdoHjKWwIFKqa?dl=0), a common network for benchmarking adv. robustness | 90% pruned with proposed technique | Benign test accuracy = 88.97% , PGD-50 test accuracy = 62.24%.

May 23, 2020: Our WRN-28-10 network with 90% connection pruning comes in the second place in the [auto-attack robustness benchmark](https://github.com/fra31/auto-attack).

## Getting started

Let’s start by installing all dependencies.

pip install -r requirement.txt

We will use train.py for all our experiments on the CIFAR-10 and SVHN dataset. For ImageNet, we will use train_imagenet.py. It provides the flexibility to work with pre-training, pruning, and Finetuning steps along with different training objectives.


	exp_mode: select from pretrain, prune, finetune


	trainer: benign (base), iterative adversarial training (adv), randomized smoothing (smooth), mix train, crown-imp


	–dataset: cifar10, svhn, imagenet




Following [this](https://github.com/allenai/hidden-networks) work, we modify the convolution layer to have an internal mask. We can use a masked convolution layer with –layer-type=subnet. The argument k refers to the fraction of non-pruned connections.

## Pre-training

In pre-training, we train the networks with k=1 i.e, without pruning. Following example pre-train a WRN-28-4 network with adversarial training.

python train.py –arch wrn_28_4 –exp-mode pretrain –configs configs/configs.yml –trainer adv –val_method adv –k 1.0

## Pruning

In pruning steps, we will essentially freeze weights of the network and only update the importance scores. The following command will prune the pre-trained WRN-28-4 network to 99% pruning ratio.

python train.py –arch wrn_28_4 –exp-mode prune –configs configs.yml –trainer adv –val_method adv –k 0.01 –scaled-score-init –source-net pretrained_net_checkpoint_path –epochs 20 –save-dense

It used 20 epochs to optimize for better-pruned networks following the proposed scaled initialization of importance scores. It also saves a checkpoint of pruned with dense layers i.e, throws aways masks form each layer after multiplying it with weights. These dense checkpoints are helpful as they are directly loaded in a model based on standard layers from torch.nn.

## Fine-tuning

In the fine-tuning step, we will update the non-pruned weights but freeze the importance scores. For correct results, we must select the same pruning ratio as the pruning step.

python train.py –arch wrn_28_4 –exp-mode finetune –configs configs.yml –trainer adv –val_method adv –k 0.01 –source-net pruned_net_checkpoint_path –save-dense –lr 0.01

## Least weight magnitude (LWM) based pruning

We use a single shot pruning approach where we prune the desired number of connections after pre-training in a single step. After that, the network is fine-tuned with a similar configuration as above.

python train.py –arch wrn_28_4 –exp-mode finetune –configs configs.yml –trainer adv –val_method adv –k 0.01 –source-net pretrained_net_checkpoint_path –save-dense –lr 0.01 –scaled-score-init

The only difference from fine-tuning from previous steps is the now we initialized the importance scores with proposed scaling. This scheme effectively prunes the connection with the lowest magnitude at the start. Since the importance scores are not updated with fine-tuning, this will effectively implement the LWM based pruning.

## Bringing it all together

We can use the following scripts to obtain compact networks from both LWM and proposed pruning techniques.


	get_compact_net_adv_train.sh: Compact networks with iterative adversarial training.


	get_compact_net_rand_smoothing.sh Compact networks with randomized smoothing.


	get_compact_net_mixtrain.sh Compact networks with MixTrain.


	get_compact_net_crown-ibp.sh Compact networks with CROWN-IBP.




## Finding robust sub-networks

It is curious to ask whether pruning certain connections itself can induce robustness in a network. In particular, given a non-robust network, does there exist a highly robust subnetwork? We find that indeed there exist such robust subnetworks with a non-trivial amount of robustness. Here is an example to reproduce these results:

python train.py –arch wrn_28_4 –configs configs.yml –trainer adv –val-method adv –k 0.5 –source-net pretrained_non-robust-net_checkpoint_path

Thus, given the checkpoint path of a non-robust network, it aims to find a sub-network with half the connections but having high empirical robust accuracy. We can similarly optimize for verifiably robust accuracy by selecting –trainer from smooth | mixtrain | crown-ibp, with using proper configs for each.

## Model Zoo (checkpoints for pre-trained and compressed networks)

We are releasing pruned models for all three pruning ratios (90, 95, 99%) for all three datasets used in the paper. In case you want to compare some additional property of pruned models with a baseline, we are also releasing non-pruned i.e., pre-trained networks. Note that, we use input normalization only for the ImageNet dataset. For each model, we are releasing two checkpoints: one with masked layers and other with dense layers. Note that the numbers from these checkpoints might differ a little bit from the ones reported in the paper.

### Adversarial training


Dataset | Architecture |                       Pre-trained (0%)                       |                          90% pruned                          |                          95% pruned                          |                          99% pruned                          |

:—–: | :———-: | :———————————————————-: | :———————————————————-: | :———————————————————-: | :———————————————————-: |

CIFAR10 |    VGG16     | [ckpt](https://www.dropbox.com/sh/1037dxc9m4m6wqs/AAD62kuJRuVaoRFOto_jxKJ2a?dl=0) | [ckpt](https://www.dropbox.com/sh/ugf2xokml5uf9s0/AAALs9dvG5fwejfBFU-RbL0ma?dl=0) | [ckpt](https://www.dropbox.com/sh/xehsrmls76k85y0/AAC-QARNd_b4hJYC5V9QwEJXa?dl=0) | [ckpt](https://www.dropbox.com/sh/8zgknaiv8o19o9k/AAAG2ZncZmhdj-Hz9uM46u-ka?dl=0) |

CIFAR10 |   WRN-28-4   | [ckpt](https://www.dropbox.com/sh/zvqgjd5xx06lh3t/AACT5vYS3S6b33-0uRDjK2Awa?dl=0) | [ckpt](https://www.dropbox.com/sh/b9cyx9ewg5dt981/AADMA9vVVCXe68RwrSZtC9tia?dl=0) | [ckpt](https://www.dropbox.com/sh/cbt8xqq9na4tj1b/AADyPq6J34cUWHB8GvGf_ivDa?dl=0) | [ckpt](https://www.dropbox.com/sh/pjn8thd1fw2pujr/AABcCAH7BEdVrJs0v_gMQ0lTa?dl=0) |


SVHN   |    VGG16     | [ckpt](https://www.dropbox.com/sh/jmo7hj25po0r7tl/AAAw756-U1bifArFr_y1GeSCa?dl=0) | [ckpt](https://www.dropbox.com/sh/7pg0aaguyzndx61/AABqL_8-XFhilpywT9jMHCHqa?dl=0) | [ckpt](https://www.dropbox.com/sh/m3t33ku6aqecv4u/AACykFCWN1-QwbMftvk-a-8na?dl=0) | [ckpt](https://www.dropbox.com/sh/d8il3fpzxvx4uhq/AACZF5GVuV5yzc781Ge5kkD9a?dl=0) |

SVHN   |   WRN-28-4   | [ckpt](https://www.dropbox.com/sh/0o906gxijsk4ruh/AAAAj-mwEnv7uNgildkeMqC-a?dl=0) | [ckpt](https://www.dropbox.com/sh/9hyh3iwnrjwvgon/AAC2a6vZSrN3DvzVaPeBhQ6Ya?dl=0) | [ckpt](https://www.dropbox.com/sh/5hs67w8yh9crhyx/AAB8Q4u_EE9rDlYkTF-bT95Ta?dl=0) | [ckpt](https://www.dropbox.com/sh/l0c1houep3w61b6/AAB9CXmKnOpmLe_VKkwB4Ovaa?dl=0) |





### Randomized smoothing


Dataset | Architecture |                       Pre-trained (0%)                       |                          90% pruned                          |                          95% pruned                          |                          99% pruned                          |

:—–: | :———-: | :———————————————————-: | :———————————————————-: | :———————————————————-: | :———————————————————-: |

CIFAR10 |    VGG16     | [ckpt](https://www.dropbox.com/sh/y5n7000qt7004fu/AAC7eRNUkGQvFfoepwn6tTpaa?dl=0) | [ckpt](https://www.dropbox.com/sh/0pwxek9vom9cywl/AACDZ_-lmhsNK9BG1BlzWpLea?dl=0) | [ckpt](https://www.dropbox.com/sh/pe8mfstkxl621hb/AAAohk6M7o-NwRXUsvk-hLfCa?dl=0) | [ckpt](https://www.dropbox.com/sh/iahysjrj1dekzpw/AAAjvfsE9Xu1P_q23lAF7uNoa?dl=0) |

CIFAR10 |   WRN-28-4   | [ckpt](https://www.dropbox.com/sh/4xwjxiyal1o7qr3/AABnCDX5dNin_NeYxmlS9XpLa?dl=0) | [ckpt](https://www.dropbox.com/sh/6jj33youpc41o4o/AAAfjYboGCg9yZc-XYyL3ABza?dl=0) | [ckpt](https://www.dropbox.com/sh/3qqw15yyza5zi6a/AABDVyGvJcCEyWT6kPDOQ-spa?dl=0) | [ckpt](https://www.dropbox.com/sh/m1dvdgedovb19yp/AACxxW-6xArpiVV4cfY7cwAYa?dl=0) |


SVHN   |    VGG16     | [ckpt](https://www.dropbox.com/sh/9k82top60lvngqb/AABAX9wJUBqGmF8akhoWrRA6a?dl=0) | [ckpt](https://www.dropbox.com/sh/7siuxmb6l9d1qt1/AADnA4m4-1k27eZCBkGyU6ena?dl=0) | [ckpt](https://www.dropbox.com/sh/j0eh9jyqpqurvl3/AAAS4awDRQhiyEnNEPNqwlg2a?dl=0) | [ckpt](https://www.dropbox.com/sh/3rnl9uea4cb44vs/AACaTNrTsp5JybLoCAGzid-4a?dl=0) |

SVHN   |   WRN-28-4   | [ckpt](https://www.dropbox.com/sh/m5he7uskva23sfr/AADUlbsXAxuROXFo7Bt2U8R6a?dl=0) | [ckpt](https://www.dropbox.com/sh/hzymmaem17pcr68/AADeFeEZJ4X2fo6WCiqfA1tFa?dl=0) | [ckpt](https://www.dropbox.com/sh/b8kqbkcsmxlhdt9/AABFYwwUHxj3-cnCgL3f0pota?dl=0) | [ckpt](https://www.dropbox.com/sh/g2z07aucy9tw4z8/AABJ1inIcVX2UFdD3e75vjMNa?dl=0) |





### Adversarial training on ImageNet (ResNet50)



Pre-trained (0%)                       |                          95% pruned                          |                          99% pruned                          |



:———————————————————-: | :———————————————————-: | :———————————————————-: |

[ckpt](https://www.dropbox.com/sh/z9m0mp6jkdp0ovi/AACtN93nnlp-u48WOgeuzb8Ra?dl=0) | [ckpt](https://www.dropbox.com/sh/w003d06uga1ylu4/AADBY9zbz9dgGYi2Ir2ZyINAa?dl=0) | [ckpt](https://www.dropbox.com/sh/i9i1i50een62zae/AAAq-HNkEsYS8dEmQY3sU4ERa?dl=0) |



## Contributors


	[Vikash Sehwag](https://vsehwag.github.io/)


	[Shiqi Wang](https://www.cs.columbia.edu/~tcwangshiqi/)




Some of the code in this repository is based on the following amazing works.


	https://github.com/allenai/hidden-networks


	https://github.com/yaircarmon/semisup-adv


	https://github.com/locuslab/smoothing


	https://github.com/huanzhang12/CROWN-IBP


	https://github.com/tcwangshiqi-columbia/symbolic_interval




## Reference

If you find this work helpful, consider citing it.
```
@article{sehwag2020hydra,


title={Hydra: Pruning adversarially robust neural networks},
author={Sehwag, Vikash and Wang, Shiqi and Mittal, Prateek and Jana, Suman},
journal={Advances in Neural Information Processing Systems},
volume={33},
year={2020}
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  # Using Pre-Training Can Improve Model Robustness and Uncertainty

This repository contains the essential code for the paper [_Using Pre-Training Can Improve Model Robustness and Uncertainty_](https://arxiv.org/abs/1901.09960), ICML 2019.

Requires Python 3+ and PyTorch 0.4.1+.

<img align=”center” src=”table_adv.png” width=”600”>

## Abstract

[Kaiming He et al. (2018)](https://arxiv.org/abs/1811.08883) have called into question the utility of pre-training by showing that training from scratch can often yield similar performance, should the model train long enough. We show that although pre-training may not improve performance on traditional classification metrics, it does provide large benefits to model robustness and uncertainty. With pre-training, we show approximately a 30% relative improvement in label noise robustness and a _10% absolute improvement in adversarial robustness_ on CIFAR-10 and CIFAR-100. Pre-training also improves model calibration. In some cases, using pre-training without task-specific methods surpasses the state-of-the-art, highlighting the importance of using pre-training when evaluating future methods on robustness and uncertainty tasks.

## Citation

If you find this useful in your research, please consider citing:



	@article{hendrycks2019pretraining,
	title={Using Pre-Training Can Improve Model Robustness and Uncertainty},
author={Hendrycks, Dan and Lee, Kimin and Mazeika, Mantas},
journal={Proceedings of the International Conference on Machine Learning},
year={2019}
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  Snapshots can be downloaded at
https://drive.google.com/drive/folders/1bqipqqZF8hTcEP4Kn0lb8TfH4Sny6ANX?usp=sharing



            

          

      

      

    

  

    
      
          
            
  Code is based on https://github.com/mmazeika/glc



            

          

      

      

    

  

    
      
          
            
  Code is based on https://github.com/hendrycks/outlier-exposure



            

          

      

      

    

  

    
      
          
            
  # Overfitting in adversarially robust deep learning
A repository which implements the experiments for exploring the phenomenon of robust overfitting, where robust performance on the test performance degradessignificantly over training. Created by [Leslie Rice][leslie link], [Eric Wong][eric link], and [Zico Kolter][zico link]. See our paper on arXiv [here][arxiv].

## News
+ 04/10/2020 - The AutoAttack framework of [Croce & Hein (2020)][autoattack arxiv] evaluated our released models using this repository [here][autoattack]. On CIFAR10, our models trained with standard PGD and early stopping ranks at #5 overall, and #1 for defenses that do not rely on additional data.
+ 02/26/2020 - arXiv posted and repository release

## Robust overfitting hurts - early stopping is essential!
A large amount of research over the past couple years has looked into defending deep networks against adversarial examples, with significant improvements over the well-known PGD-based adversarial training defense. However, adversarial training doesn’t always behave similarly to standard training. The main observation we find is that, unlike in standard training, training to convergence can significantly harm robust generalization, and actually increases robust test error well before training has converged, as seen in the following learning curve:

![overfitting](https://github.com/locuslab/robust_overfitting/blob/master/cifar10_curve.png)

After the initial learning rate decay, the robust test error actually increases! As a result, training to convergence is bad for adversarial training, and oftentimes, simply training for one epoch after decaying the learning rate achieves the best robust error on the test set. This behavior is reflected across multiple datasets, different approaches to adversarial training, and both L-infinity and L-2 threat models.

## No algorithmic improvements over PGD-based adversarial training
We can apply this knowledge to PGD-based adversarial training (e.g. as done by the original paper [here](https://arxiv.org/abs/1706.06083)), and find that early stopping can substantially improve the robust test error by 8%! As a result, we find that PGD-based adversarial training is as good as existing SOTA methods for adversarial robustness (e.g. on par with or slightly better than [TRADES](https://github.com/yaodongyu/TRADES)). On the flipside, we note that the results reported by TRADES also rely on early stopping, as training the TRADES approach to convergence results in a significant increase in robust test error. Unfortunately, this means that all of the algorithmic gains over PGD in adversarially robust training can be equivalent obtained with early stopping.

## What is in this repository?
+ The experiments for CIFAR-10, CIFAR-100, and SVHN are in train_cifar.py, train_cifar100.py, train_svhn.py respectively.
+ CIFAR-10 training with semisupervised data is done in train_cifar_semisupervised_half.py, and uses the 500K pseudo-labeled TinyImages data from <https://github.com/yaircarmon/semisup-adv>
+ TRADES training is done with the repository located at <https://github.com/yaodongyu/TRADES>, with the only modification being the changes to the learning rate schedule to train to convergence (to decay at epochs 100 and 150 out of 200 total epochs).
+ For ImageNet training, we used the repository located at <https://github.com/MadryLab/robustness> with no modifications. The resulting logged data is stored in .pth files which can be loaded with torch.load() and are simply dictionaries of logged data. The scripts containing the parameters for resuming the ImageNet experiments can be found in imagenet_scripts/.
+ Training logs are all located in the experiments folder, and each subfolder corresponds to a set of experiments carried in the paper.

Model weights for the following models can be found in this [drive folder][model weights]:
+ The best checkpoints for CIFAR-10 WideResNets defined in wideresnet.py (in for width factor 10 and 20 (from the double descent curve trained against L-infinity)
+ The best checkpoints for SVHN / CIFAR-10 (L2) / CIFAR-100 / ImageNet models reported in Table 1 (the ImageNet checkpoints are in the format directly used by <https://github.com/MadryLab/robustness>). The remaining models are for the Preactivation ResNet18 defined in preactresnet.py.

[leslie link]: https://leslierice1.github.io/
[eric link]: https://riceric22.github.io/
[zico link]: http://zicokolter.com/

[arxiv]: https://arxiv.org/abs/2002.11569
[model weights]: https://drive.google.com/drive/folders/110JHo_yH9zwIf1b12jKoG6dRonrow9eA?usp=sharing
[autoattack]: https://github.com/fra31/auto-attack
[autoattack arxiv]: https://arxiv.org/abs/2003.01690



            

          

      

      

    

  

    
      
          
            
  MIT License

Copyright (c) 2019 Yair Carmon, Aditi Raghunathan

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.



            

          

      

      

    

  

    
      
          
            
  # Unlabeled Data Improves Adversarial Robustness

This repository contains code for reproducing data and models from the NeurIPS 2019 paper [Unlabeled Data Improves Adversarial Robustness](https://arxiv.org/pdf/1905.13736.pdf) by Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, Percy Liang and John C. Duchi.

## CIFAR-10 unlabeled data and trained models

Below are links to files containing our unlabeled data and pretrained models:


	[500K unlabeled data from TinyImages (with pseudo-labels)](https://drive.google.com/open?id=1LTw3Sb5QoiCCN-6Y5PEKkq9C9W60w-Hi)


	[Trained heuristic defense RST_adv(50K+500K) model (see Table 1 in the paper)](https://drive.google.com/open?id=1S3in_jVYJ-YBe5-4D0N70R4bN82kP5U2)


	[Trained certified defense RST_stab(50K+500K) model (see Figure 1 in the paper)](https://drive.google.com/open?id=1qNCQf1S47W9DPurUN4SKakmU87wE7ZRv)




Additional files:
- [Trained data sourcing model


(Classifies between CIFAR-10 and non-CIFAR-10 content)](https://drive.google.com/open?id=1neK7UPhX7muJM7GvUtYSPZB3yan8iy5b)





	[TinyImages indices with keywords matching CIFAR-10




(from the CIFAR-10.1 paper)](https://drive.google.com/open?id=1OaAGYLxr62t7Zby6F0jScMORnadk6Oz2)
- [Nearest neighbor L2 distances between CIFAR-10 test set and TinyImages](https://drive.google.com/open?id=1yMDnCfByqE6Y3l44844zF4fzjTyXaeKs)

## Dependencies
To create a conda environment called semisup-adv containing all the dependencies, run
`
conda env create -f environment.yml
`

Note: We tested this code on 2 GPUs in parallel, each with 12GB of memory. Running on CPUs or GPUs with less memory might require adjustments.

The code in this repo is based on code from the following sources:
- TRADES: https://github.com/yaodongyu/TRADES
- Randomized smoothing: https://github.com/locuslab/smoothing
- AutoAugment: https://github.com/DeepVoltaire/AutoAugment
- Cutout: https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py
- FoolBox: https://github.com/bethgelab/foolbox
- ShakeShake: https://github.com/hysts/pytorch_shake_shake
- CIFAR-10.1: https://github.com/modestyachts/CIFAR-10.1

## Running robust self-training
To run robust self-training you will a pickle file containing pseudo-labeled data. You can download `ti_500K_pseudo_labeled.pickle` containing our 500K pseudo-labeled TinyImages, or you can generate one from scratch using the instructions below.

### Adversarial training with TRADES
The following command performs adversarial training and produces a model
equivalent to  RST_adv(50K+500K) described in the paper.
`
python robust_self_training.py --aux_data_filename ti_500K_pseudo_labeled.pickle --distance l_inf --epsilon 0.031 --model_dir rst_adv
`

When the script finishes running there will a be checkpoint file called rst_adv/checkpoint-epoch200.pt. The following commands runs a PGD attack (PGD_Ours from the paper) on the model
`
python attack_evaluation.py --model_path rst_adv/checkpoint-epoch200.pt --attack pgd --output_suffix pgd_ours
`

To run the Carlini-Wanger attack on randomly selected 1000 images from the test set, use
`
python attack_evaluation.py --model_path rst_adv/checkpoint-epoch200.pt --attack cw --output_suffix cw --num_eval_batches 5 --shuffle_testset
`

### Stability training
The following commands performs stability training and produces a model equivalent to
RST_stab(50K+500K) described in the paper.
```
python robust_self_training.py –aux_data_filename ti_500K_pseudo_labeled.pickle –distance l_2 –epsilon 0.25 –model_dir rst_stab –epochs 800


```




When the script finishes running there will a be checkpoint file called rst_stab/checkpoint-epoch800.pt.  The following commands runs randomized smoothing certification on the model, as described in the paper.
`
python smoothing_evaluation.py --model_path rst_stab/checkpoint-epoch800.pt --sigma 0.25
`

## Creating the unlabeled data from scratch

Note: creating the unlabeled data from scratch takes a while; plan for three days at least.

### Step zero: Downloading data
Create a data directory that has the following files:
- [tiny_images.bin](http://horatio.cs.nyu.edu/mit/tiny/data/tiny_images.bin)
- [TinyImages keyword information](https://drive.google.com/open?id=1OaAGYLxr62t7Zby6F0jScMORnadk6Oz2)

### Step one: Tiny Image preliminaries
In this step, we do the following two preliminary steps.
1) Compute distances from all the TinyImages to CIFAR-10 test set, in order to ensure we do not add any images from the test set to the unlabeled data sourced from TinyImages.
2) Create train/test data for selection model (See Appendix B.6)

Note that the data directory should contain the following files: tiny_images.bin, cifar10_keywords_unique_v7.json, tinyimage_subset_indices_v7.json  and tinyimage_subset_data_v7.pickle.


	Here is an example run.
	`
python tinyimages_preliminaries.py --data_dir ../data/ --output_dir ../data
`





### Step two: Train a selection model
Here we train the data selection model described in Appendix B.6 of the paper.  Note that data_dir should contain the following files: tiny_images.bin, ti_vs_cifar_inds.pickle (from above).

Here is an example run.


```
python train_cifar10_vs_ti.py –output_dir ../cifar10-vs-ti/ –data_dir ../data/




```

### Step three:  Selecting unlabeled data and removing CIFAR-10 test set
We apply the model trained above on TinyImages and select images based on the predictions, while making sure to remove all images that are close (in l2 distance) to the CIFAR-10 test set.


```





	python tinyimages_prediction.py –model_path ../cifar10-vs-ti/model_state_epoch520.pth –data_dir ../data –output_dir ../data/ –output_filename ti_500K_unlabeled.pickle
	```





### Step four: Training a vanilla model on CIFAR-10
We now train a model (Wide ResNet 28-10) on CIFAR-10 training set.


```





	python robust_self_training.py –distance l_2 –beta 0 –unsup_fraction 0 –model_dir vanilla
	```





### Step five: Generating pseudo-labels
As a final step, we generate pseudo-labels by applying the classifier from Step 4 on the unlabeled data sourced in Step 3.


```





	python generate_pseudolabels.py –model_dir ../vanilla  –model_epoch 200 –data_dir ../data/ –data_filename ti_500K_unlabeled.pickle –output_dir ../data/ –output_filename ti_500K_pseudo_labeled.pickle
	```

## Reference





`
@inproceedings{carmon2019unlabeled,
author = {Yair Carmon and Aditi Raghunathan and Ludwig Schmidt and Percy Liang and John Duchi},
title = {Unlabeled Data Improves Adversarial Robustness},
year = 2019,
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
}
`



            

          

      

      

    

  

    
      
          
            
  # TRADES (**TR**adeoff-inspired **A**dversarial **DE**fense via **S**urrogate-loss minimization)

This is the official code for the [ICML’19 paper](https://arxiv.org/pdf/1901.08573.pdf) “Theoretically Principled Trade-off between Robustness and Accuracy” by [Hongyang Zhang](http://www.cs.cmu.edu/~hongyanz/) (CMU, TTIC), [Yaodong Yu](https://github.com/yaodongyu) (University of Virginia), Jiantao Jiao (UC Berkeley), Eric P. Xing (CMU & Petuum Inc.), Laurent El Ghaoui (UC Berkeley), and Michael I. Jordan (UC Berkeley).

The methodology is the first-place winner of the [NeurIPS 2018 Adversarial Vision Challenge (Robust Model Track)](https://www.crowdai.org/challenges/nips-2018-adversarial-vision-challenge-robust-model-track/leaderboards).

The attack method transferred from TRADES robust model is the first-place winner of the [NeurIPS 2018 Adversarial Vision Challenge (Targeted Attack Track)](https://www.crowdai.org/challenges/nips-2018-adversarial-vision-challenge-targeted-attack-track/leaderboards).

## Prerequisites
* Python (3.6.4)
* Pytorch (0.4.1)
* CUDA
* numpy

## Install
We suggest to install the dependencies using Anaconda or Miniconda. Here is an exemplary command:
`
$ wget https://repo.anaconda.com/archive/Anaconda3-5.1.0-Linux-x86_64.sh
$ bash Anaconda3-5.1.0-Linux-x86_64.sh
$ source ~/.bashrc
$ conda install pytorch=0.4.1
`

## TRADES: A New Loss Function for Adversarial Training

### What is TRADES?
TRADES minimizes a regularized surrogate loss L(.,.) (e.g., the cross-entropy loss) for adversarial training:
![](http://latex.codecogs.com/gif.latex?min_fmathbb{E}left\{mathcal{L}(f(X),Y)+betamax_{X’inmathbb{B}(X,epsilon)}mathcal{L}(f(X),f(X’))right\}.)

Important: the surrogate loss L(.,.) in the second term should be classification-calibrated according to our theory, in contrast to the L2 loss used in [Adversarial Logit Pairing](https://arxiv.org/pdf/1803.06373.pdf).

The first term encourages the natural error to be optimized by minimizing the “difference” between f(X) and Y , while the second regularization term encourages the output to be smooth, that is, it pushes the decision boundary of classifier away from the sample instances via minimizing the “difference” between the prediction of natural example f(X) and that of adversarial example f(X′). The tuning parameter β plays a critical role on balancing the importance of natural and robust errors.


	<p align=”center”>
	<img src=”images/grid.png” width=”450”>





</p>
<p align=”center”>
<b>Left figure:</b> decision boundary by natural training. <b>Right figure:</b> decision boundary by TRADES.
</p>

## How to use TRADES to train robust models?

### Natural training:
```python
def train(args, model, device, train_loader, optimizer, epoch):


model.train()
for batch_idx, (data, target) in enumerate(train_loader):


data, target = data.to(device), target.to(device)
optimizer.zero_grad()
loss = F.cross_entropy(model(data), target)
loss.backward()
optimizer.step()







`
### Adversarial training by TRADES:
To apply TRADES, cd into the directory, put 'trades.py' to the directory. Replace ```F.cross_entropy()` above with `trades_loss()`:
```python
from trades import trades_loss


	def train(args, model, device, train_loader, optimizer, epoch):
	model.train()
for batch_idx, (data, target) in enumerate(train_loader):


data, target = data.to(device), target.to(device)
optimizer.zero_grad()
# calculate robust loss - TRADES loss
loss = trades_loss(model=model,


x_natural=data,
y=target,
optimizer=optimizer,
step_size=args.step_size,
epsilon=args.epsilon,
perturb_steps=args.num_steps,
beta=args.beta,
distance=’l_inf’)




loss.backward()
optimizer.step()








`
#### Arguments:
* ```step_size`: step size for perturbation
* `epsilon`: limit on the perturbation size
* `num_steps`: number of perturbation iterations for projected gradient descent (PGD)
* `beta`: trade-off regularization parameter
* `distance`: type of perturbation distance, `'l_inf'` or `'l_2'`

The trade-off regularization parameter `beta` can be set in `[1, 10]`. Larger `beta` leads to more robust and less accurate models.

### Basic MNIST example (adversarial training by TRADES):
`python
python mnist_example_trades.py
`
We adapt `main.py` in [[link]](https://github.com/pytorch/examples/tree/master/mnist) to our new loss `trades_loss()` during training.

## Running demos

### Adversarial training:


	Train WideResNet-34-10 model on CIFAR10:





	```bash
	$ python train_trades_cifar10.py





```


	Train CNN model (four convolutional layers + three fully-connected layers) on MNIST:





	```bash
	$ python train_trades_mnist.py





```


	Train CNN model (two convolutional layers + two fully-connected layers) on MNIST (digits ‘1’ and ‘3’) for binary classification problem:





	```bash
	$ python train_trades_mnist_binary.py





```

### Robustness evaluation:


	Evaluate robust WideResNet-34-10 model on CIFAR10 by FGSM-20 attack:





	```bash
	$ python pgd_attack_cifar10.py





```


	Evaluate robust CNN model on MNIST by FGSM-40 attack:





	```bash
	$ python pgd_attack_mnist.py





```

## Experimental results
### Results in the NeurIPS 2018 Adversarial Vision Challenge [[link]](https://www.crowdai.org/challenges/nips-2018-adversarial-vision-challenge-robust-model-track/leaderboards)
TRADES won the 1st place out of 1,995 submissions in the NeurIPS 2018 Adversarial Vision Challenge (Robust Model Track) on the Tiny ImageNet dataset, surpassing the runner-up approach by 11.41% in terms of L2 perturbation distance.
<p align=”center”>


<img src=”images/NeurIPS.png” width=”450”>




</p>
<p align=”center”>
Top-6 results (out of 1,995 submissions) in the NeurIPS 2018 Adversarial Vision Challenge (Robust Model Track). The vertical axis represents the mean L2 perturbation distance that makes robust models fail to output correct labels.
</p>

### Certified robustness [[code]](https://github.com/hongyanz/TRADES-smoothing)
TRADES + Random Smoothing achieves SOTA certified robustness in ![](http://latex.codecogs.com/gif.latex?ell_infty) norm at radius 2/255.
* Results on certified ![](http://latex.codecogs.com/gif.latex?ell_infty) robustness at radius 2/255 on CIFAR-10:


Method                | Robust Accuracy       | Natural Accuracy |



|-----------------------|———————–|------------------|
| TRADES + Random Smoothing             |  62.6%        |   78.7%               |
| [Salman et al. (2019)](https://arxiv.org/pdf/1906.04584.pdf)                  |  60.8%        |   82.1%               |
| [Zhang et al. (2020)](https://arxiv.org/pdf/1906.06316.pdf)                   |  54.0%        |   72.0%               |
| [Wong et al. (2018)](https://arxiv.org/pdf/1805.12514.pdf)            |  53.9%        |   68.3%               |
| [Mirman et al. (2018)](http://proceedings.mlr.press/v80/mirman18b/mirman18b.pdf)              |  52.2%        |   62.0%               |
| [Gowal et al. (2018)](https://arxiv.org/pdf/1810.12715.pdf)                   |  50.0%        |   70.2%               |
| [Xiao et al. (2019)](https://arxiv.org/pdf/1809.03008.pdf)            |  45.9%        |   61.1%               |

## Want to attack TRADES? No problem!

TRADES is a new baseline method for adversarial defenses. We welcome various attack methods to attack our defense models. We provide checkpoints of our robust models on MNIST dataset and CIFAR dataset. On both datasets, we normalize all the images to `[0, 1]`.

### How to download our CNN checkpoint for MNIST and WRN-34-10 checkpoint for CIFAR10?
`bash
cd TRADES
mkdir checkpoints
cd checkpoints
`
Then download our pre-trained model

[[download link]](https://drive.google.com/file/d/10sHvaXhTNZGz618QmD5gSOAjO3rMzV33/view?usp=sharing) (CIFAR10)

[[download link]](https://drive.google.com/file/d/1scTd9-YO3-5Ul3q5SJuRrTNX__LYLD_M/view?usp=sharing) (MNIST)

and put them into the folder “checkpoints”.

### How to download MNIST dataset and CIFAR10 dataset?
`bash
cd TRADES
mkdir data_attack
cd data_attack
`

Then download the MNIST and CIFAR10 datasets

[[download link]](https://drive.google.com/file/d/1PXePa721gTvmQ46bZogqNGkW31Vu6u3J/view?usp=sharing) (CIFAR10_X)

[[download link]](https://drive.google.com/file/d/1znICoQ8Ds9MH-1yhNssDs3hgBpvx57PV/view?usp=sharing) (CIFAR10_Y)

[[download link]](https://drive.google.com/file/d/12aWmoNs3EMwYe_Z5pBidx_22xj-5IqDU/view?usp=sharing) (MNIST_X)

[[download link]](https://drive.google.com/file/d/1kCBlNfg2TRn8BlqCkNTJiPDgsxIliQgZ/view?usp=sharing) (MNIST_Y)

and put them into the folder “data_attack”.

### About the datasets

All the images in both datasets are normalized to `[0, 1]`.


	`cifar10_X.npy`   – a `(10,000, 32, 32, 3)` numpy array


	`cifar10_Y.npy`   – a `(10,000, )` numpy array


	`mnist_X.npy`     – a `(10,000, 28, 28)` numpy array


	`mnist_Y.npy`     – a `(10,000, )` numpy array




### Load our CNN model for MNIST
```python
from models.small_cnn import SmallCNN

device = torch.device(“cuda”)
model = SmallCNN().to(device)
model.load_state_dict(torch.load(‘./checkpoints/model_mnist_smallcnn.pt’))
`
For our model ```model_mnist_smallcnn.pt`, the limit on the perturbation size is `epsilon=0.3` (L_infinity perturbation distance).

#### White-box leaderboard
|Rank | Attack                  | Submitted by          | Natural Accuracy | Robust Accuracy | Time |
|-----------------------|———————–|-----------------------|——————|-----------------|—————–|
|1| ITA | Hong Lei | 99.48% | 92.46% | Aug 27, 2021 |
|2| [EWR-PGD](https://github.com/liuye6666/EWR-PGD)     |  Ye Liu (second entry)        |   99.48%              |    92.47%     | Dec 20, 2020
|3| [EWR-PGD](https://github.com/liuye6666/EWR-PGD)     |  Ye Liu       |   99.48%              |    92.52%     | Sep 9, 2020
|4|[Square Attack](https://arxiv.org/abs/1912.00049)            | Andriushchenko Maksym |   99.48%              |     92.58%        | Mar 10, 2020
|5| [fab-attack](https://github.com/fra31/fab-attack)                   |  Francesco Croce      |   99.48%              |     93.33%            | Jun 7, 2019
|6| FGSM-1,000                  |  (initial entry)      |     99.48%       |     95.60%      | -
|7| FGSM-40             |  (initial entry)      |     99.48%       |     96.07%      | -

#### How to attack our CNN model on MNIST?
* Step 1: Download `mnist_X.npy` and `mnist_Y.npy`.
* Step 2: Run your own attack on `mnist_X.npy` and save your adversarial images as `mnist_X_adv.npy`.
* Step 3: put `mnist_X_adv.npy` under `./data_attack`.
* Step 4: run the evaluation code,
```bash


$ python evaluate_attack_mnist.py




`
Note that the adversarial images should in ```[0, 1]` and the largest perturbation distance is ```epsilon = 0.3```(L_infinity).

### Load our WideResNet (WRN-34-10) model for CIFAR10
```python
from models.wideresnet import WideResNet

device = torch.device(“cuda”)
model = WideResNet().to(device)
model.load_state_dict(torch.load(‘./checkpoints/model_cifar_wrn.pt’))
`
For our model ```model_cifar_wrn.pt`, the limit on the perturbation size is `epsilon=0.031` (L_infinity perturbation distance).

#### White-box leaderboard


Rank      | Attack                    | Submitted by          | Natural Accuracy      | Robust Accuracy       | Time  |



|-----------------------|———————–|-----------------------|———————–|-----------------------|———————–|
|1| [EWR-PGD](https://github.com/liuye6666/EWR-PGD)     |  Ye Liu (second entry)        |   84.92%              |    52.92%     | Dec 20, 2020
|2| [CAA](https://arxiv.org/abs/2012.05434)     |  Xiaofeng Mao         |   84.92%              |    52.94%     | Dec 14, 2020
|3| [EWR-PGD](https://github.com/liuye6666/EWR-PGD)     |  Ye Liu       |   84.92%              |    52.95%     | Sep 9, 2020
|4| [ODI-PGD](https://arxiv.org/abs/2003.06878)         |  Yusuke Tashiro       |   84.92%              |     53.01%            | Feb 16, 2020
|5| [MultiTargeted](https://arxiv.org/abs/1910.09338)           |  Sven Gowal           |   84.92%              |     53.07%            | Oct 31, 2019
|6| [AutoAttack](https://github.com/fra31/auto-attack)          |  (initial entry)      |   84.92%              |     53.08%            | -
|7| [fab-attack](https://github.com/fra31/fab-attack)                   |  Francesco Croce      |   84.92%              |     53.44%            | Jun 7, 2019
|8| ITA | Hong Lei | 84.92% | 53.85% | Aug 27, 2021 |
|9| FGSM-1,000                  |  (initial entry)      |   84.92%              |     56.43%            | -
|10| FGSM-20            |  (initial entry)      |   84.92%              |     56.61%            | -
|11| MI-FGSM            |  (initial entry)      |   84.92%              |     57.95%            | -
|12| FGSM                       |  (initial entry)      |   84.92%              |     61.06%            | -
|13| DeepFool (L_inf)           |  (initial entry)      |   84.92%              |     61.38%            | -
|14| CW                         |  (initial entry)      |   84.92%              |     81.24%            | -
|15| DeepFool (L_2)     |  (initial entry)      |   84.92%              |     81.55%            | -
|16| LBFGSAttack        |  (initial entry)      |   84.92%              |     81.58%            | -

#### How to attack our WRM-34-10 model on CIFAR10?
* Step 1: Download `cifar10_X.npy` and `cifar10_Y.npy`.
* Step 2: Run your own attack on `cifar10_X.npy` and save your adversarial images as `cifar10_X_adv.npy`.
* Step 3: put `cifar10_X_adv.npy` under `./data_attack`.
* Step 4: run the evaluation code,
```bash


$ python evaluate_attack_cifar10.py




`
Note that the adversarial images should be in ```[0, 1]` and the largest perturbation distance is ```epsilon = 0.031```(L_infinity).

## Reference
For technical details and full experimental results, please check [the paper](https://arxiv.org/pdf/1901.08573.pdf).
```
@inproceedings{zhang2019theoretically,


author = {Hongyang Zhang and Yaodong Yu and Jiantao Jiao and Eric P. Xing and Laurent El Ghaoui and Michael I. Jordan},
title = {Theoretically Principled Trade-off between Robustness and Accuracy},
booktitle = {International Conference on Machine Learning},
year = {2019}





}

## Contact
Please contact yyu@eecs.berkeley.edu and hongyanz@ttic.edu if you have any question on the codes. Enjoy!
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